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[1] We introduce new vector diffractive integrals, which can be used for the radio
holographic remote sensing of the atmosphere and terrestrial surfaces. These integrals are
exact relationships connecting the electromagnetic fields known at some interface or curve
in space with radio fields on the terrestrial surface or inside the atmosphere. They allow
one to restore the radio image of the atmosphere or Earth surface in the investigated
regions using a radio hologram registered in space by a small instrument installed on the
low Earth orbit satellite. The high-precision radio signals of the Global Positioning System
(GPS) navigational satellites can be used as a source of the radio emission for radio
holograms. We indicated a connection between the vector diffractive integrals and scalar
diffractive integral, which is now applied for the GPS occultation investigation of Earth’s
atmosphere under an assumption of the spherical symmetry. For the atmosphere itself the
accuracy of the scalar theory corresponds to the accuracy of the GPS occultation
measurements. The most significant factor that affects the polarization is the reflection
from the surface. The use of vector theory can thus be useful for the investigation of
Earth’s atmosphere by detecting the reflected rays. We show that the reference signal
needed for restoration of the radio field from the registered radio hologram is coinciding
with the Green function of the scalar wave equation corresponding to a three-dimensional
inhomogeneous medium. This substantiates the radio holographic–focused synthetic
aperture principle (RFSA) in its application to the atmosphere and surface research. We
validated the high vertical resolution of the RFSA method by obtaining radio image of the
atmosphere and Earth’s surface. Zverev’s diffractive integral is used to compare the
canonical transform (CT), back propagation (BP), and RFSA methods. For comparison, a
general inverse operator (GIO) is introduced. The CT and BP transforms can be obtained
by application of the GIO transform to Zverev’s diffractive integral. The CT method
can resolve physical rays in multipath situations under an assumption of the global
spherical symmetry of the atmosphere and ionosphere. The RFSA method can account for
the multipath in the case when the global spherical symmetry is absent by using the
appropriate model of the refractivity and has a promise to be effective for operational data
analysis. INDEX TERMS: 6904 Radio Science: Atmospheric propagation; 6909 Radio Science:

Electromagnetic metrology; 6964 Radio Science: Radio wave propagation; 6969 Radio Science: Remote

sensing; KEYWORDS: remote sensing, radio wave propagation, atmospheric propagation
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1. Introduction

[2] The method of the wave front inversion consists of
determining the radio field inside the inhomogeneous
media using a radio hologram registered on some inter-
face or curve in space. The name of the method has been
introduced by Zeldovich et al. [1985]. They described its
application for the optical sounding of the inhomogeneous
media. Unlike the optical range, the digital methods are
applied for the radio holographic remote sensing. The
digital methods for remote sensing use the diffractive
integrals connecting the electromagnetic fields on some
interface or curve in the space (e.g., the orbital trajectory
of a low Earth orbit (LEO) satellite with a radio holo-
graphic receiver) with the field in the space between the
transmitter and receiver. Zverev [1975] obtained the three-
dimensional (3-D) scalar equation, which links the angu-
lar spectrum of the field with the angular spectrum of the
back-propagated wave in the free space.Marouf and Tyler
[1982] described the inversion method for obtaining the
spatial structure of Saturn’s rings using the radio holo-
grams registered onboard Voyager spacecraft. They con-
structed a reference signal using the known form of the
rings and diffraction theory and obtained spatial resolu-
tion about of 1/10–1/100 of the Fresnel’s zone size.
Kunitsyn and Tereshchenko [1991] and Kunitsyn et al.
[1994] considered the application of the tomographic
method for the remote sensing of Earth’s ionosphere using
the radio emission of the LEO satellites. Gorbunov et al.
[1996] introduced the back-propagation (BP) method on
the basis of the scalar diffractive 2-D integral, to heighten
the vertical resolution in the radio occultation (RO)
experiments. The BP method has a significant difference
in comparison with the radio holographic approach sug-
gested by Marouf and Tyler [1982]. Back propagation is
performed using the 2-D free space Green function rather
than the Green function obtained as a solution of a
boundary diffraction problem in a 3-D medium. Pavelyev
[1998], Hocke et al. [1999], and Igarashi et al. [2000,
2001] derived a radio holographic–focused synthetic
aperture (RFSA) principle for RO data analysis. The
Fourier analysis in the finite time intervals is applied to
the product of the RO and reference signals with the aims
(1) to obtain 1-D radio images of the atmosphere and
terrestrial surface and (2) to retrieve the vertical profiles of
the physical parameters in the atmosphere and meso-
sphere. Using their method, one can directly determine
the dependence of the refraction angle on the impact
parameter without application of complex BP technology.
Hocke et al. [1999] and Igarashi et al. [2000, 2001]
determined by the RFSA method the electron density
Ne(h) and its vertical gradient dNe(h)/dh in the mesosphere

and temperature T(h) in the atmosphere. Beyerle and
Hocke [2001] and Igarashi et al. [2001] applied the RFSA
method to visualize signals reflected from the terrestrial
surface. They were the first to reveal surface reflections
and obtained 1-D radio images of the troposphere and the
surface by analyzing the Global Positioning System/
Meteorology Experiment (GPS/MET) RO data. Igarashi
et al. [2001] and Pavelyev et al. [2002a] provided prelim-
inary analysis of radio images and estimated the vertical
resolution of the RFSA method as about of 70 m. Beyerle
et al. [2002] applied the RFSA method for a radio
holographic analysis of the GPS signal propagation in
the troposphere and surface reflections. They obtained
important information on a global scale on the humidity
concentration in the boundary layer of the atmosphere
using the CHAMPROdata. It may be noted that the RFSA
method is distinctive in comparison with the unfocused
synthetic aperture (Doppler selection) method applied
early by Lindal et al. [1987] for the spectral analysis of
the RO data to obtain the radio images of Uranus’
atmosphere. Gorbunov [2002a, 2002b] used also the
representation of the wave field as a sum of spherical
waves to correct approximately for the wave front curva-
ture and considered examples of radio images with mul-
tiple direct and reflected rays for the GPS/MET RO data.
In the case of unfocused synthesis, the size of the synthetic
aperture and the vertical resolution are limited by an
uncertainty condition between resolution in the impact
parameter and refraction angle [Gorbunov et al., 2000].
The RFSA method, in principle, does not obey the
uncertainty condition because it accounts for the curvature
of the wave fronts corresponding to the physical rays after
propagation in Earth’s atmosphere and can use the large
size of the synthetic aperture for effective compression of
the angular plane wave spectrum of the RO signal.
According to this advantage, the RFSA method can
discern the surface reflections near the powerful tropo-
spheric RO signal and can realize in practice the high
values of the vertical resolution�100 m as expected early
for the BP method [Hocke et al., 1999; Igarashi et al.,
2000, 2001]. Note, however, that to achieve high resolu-
tion in themultipath areas, onemust use an accurate model
of the refractivity in the RO region to construct the
reference signal, which has high level of coherence with
the RO signal. Recently,Gorbunov [2002c] introduced the
canonical transform (CT) method for processing the GPS
RO data in lower troposphere. The main idea of the CT
method consists of using Fourier integral operators (FIO)
to find directly the dependence of the refraction angle on
the impact parameter for each physical ray in multipath
conditions. Jensen et al. [2003] introduced the full spec-
trum inversion (FSI) method to process the RO signals.
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They established a novel connection between the deriva-
tive of the phase of a physical ray on the instantaneous
frequency in the full Fourier spectrum of the RO signal
and the time of intersection of the physical ray with orbital
trajectory of LEO satellite. This feature of the FSI method
can be used to obtain under an assumption of spherical
symmetry the refraction angle and impact parameter for
each physical ray.
[3] The progress in developing the radio holographic

investigations is connected, in particular, with existence
of the radio navigational satellite systems GPS/Global
Navigation Satellite System (GLONASS), which are
emitting high-precision, coherent, and stable radio sig-
nals. The diffractive integrals can be used to realize the
high precision and stability of the radio signals of the
radio navigational systems and to obtain extreme values
of the spatial resolution and accuracy in the remote
sensing of the atmosphere and surface of Earth from
space. The aim of this paper consists of the presentation
of the diffractive vector integrals for bistatic radio holo-
graphic remote sensing of the terrestrial surface and
atmosphere, substantiating the RFSA method, introduc-
ing a simple way to obtain the CT and BP transforms and
establishing their limitations using a GIO. In section 2 we
derive the diffractive 3-D vector integrals for describing
the direct propagation of the radio waves in the 3-D
inhomogeneous media. To accomplish this end, we mod-
ernize the Stratton-Chu vector theory developed early for
the case of 3-D homogeneous media [Stratton, 1941].
The derived vector equations include Green function,
which is a solution of the 3-D scalar wave equation for
an inhomogeneous medium. This is significantly different
from results obtained early by Müller [1969] and Ström
[1991] for an inhomogeneous medium because their
vector equations contain the free space Green function.
In section 3 we derive 3-D vector equations for back-
propagating radio waves and then show that the scalar
2-D diffractive integral can be derived from the 3-D
vector diffractive integrals for a 2-D medium. A connec-
tion between the solution of 3-D diffraction problem and
the reference signal for the RFSAmethod is established in
section 4. In section 4 we derived the basic equations of
the RFSA method, illustrated its capability to compress
the angular spectrum of the RO signal, and achieved high
vertical resolution. In section 5 we compared the RFSA,
CT, and BP methods and established their limitations
using the GIO transform.

2. Vector Equations for Radio Fields in

the 3-D Inhomogeneous Medium

(Direct Propagation)

[4] The problem of expressing the electric and magnetic
vectorsE, H of the radio field at an interior point in terms

of the values E, H over an enclosing surface S (Figure 1)
has been considered for the homogeneous medium by
Stratton [1941]. Radio holographic equations for 3-D
inhomogeneous medium may be obtained by applying a
vector analogue of Green’s theorem to the field
equations. It was shown that if P and Q are two vector
functions of position with the proper continuity, thenZ

v

Qrrr�rrr� P � Prrr�rrr� Qð Þdv

¼
Z
s

P �rrr� Q� Q�rrr� Pð Þn da; ð1Þ

where S is a regular surface (Figure 1) bounding the
volume V, and n is the normal to the surface S oriented in
the outward direction relative to volume V [Stratton,
1941, section 4.14]. The field vectors contain the time
only as a factor exp(�iwt). The Maxwell’s field
equations may be written in the form [Miller and
Suvorov, 1992]:

rrr� E � iwm=c H ¼ �4p=c J*;

rH ¼ 4p=m r*�Hrrr lnmð Þ;
ð2Þ

rrr�H þ iwe=c E ¼ 4p=c J ;

rE ¼ 4pe�1r� Errr lneð Þ;
ð3Þ

where e is the electric permittivity, m is the magnetic
permeability of the medium, E, H are the electric and
magnetic fields, J, J* are the electric and magnetic

Figure 1. The inhomogeneous volume V and its
boundary S.

RS4011 PAVELYEV ET AL.: DIFFRACTIVE INTEGRAL FOR RADIOHOLOGRAPHY

3 of 16

RS4011



currents, and r, r* are the electric and magnetic charges.
Currents and charges of both types are related by the
equations of continuity [Stratton, 1941]:

rrr 	 J � iwr ¼ 0; rrr 	 J*� iwr* ¼ 0: ð4Þ

The vectors E and H satisfy

rrr�rrr� E � k2E ¼ iwm=c 4p=cJ þ rrr lnmð Þ �H½ �ð Þ
� 4p=crrr� J*

rrr�rrr�H � k2H ¼ iwe=c 4p=c J*� rrr lneð Þ � E½ �ð Þ
þ 4p=c rrr� J

k2 ¼ w2em=c2: ð5Þ

[5] According to the method described by Stratton
[1941], let in equation (1) P = E, Q = fa, where a is a
unit vector in an arbitrary direction. The function f
(Green’s function) is supposed to be a solution of the
wave equation:

Dfþ k2f ¼ �4pd r � r0ð Þ; ð6Þ

where d(r � r0) is the delta function and r, r0 are vectors
describing the positions of the element of integration at
(x, y, z) and the point of observation A at (x0, y0, z0) inside
volume V. Distance jr � r0j = r is measured from the
element at (x, y, z) to the point of observation at A:

r ¼ x� x0ð Þ2þ y� y0ð Þ2þ z� z0ð Þ2
h i1=2

: ð7Þ

The next relationships can be obtained by using the
vector derivative formulas [Stratton, 1941] and equation
(5) under an assumption that f is a solution of the wave
equation (6)

rrr� Q ¼ rrrf� a;rrr�rrr� Q ¼ ak2fþrrr a 	 rrrfð Þ;

rrr�rrr� P ¼ k2E þ iwm=c 4p=cJ þ rrr lnmð Þ �H½ �ð Þ

� 4p=crrr� J*;

Errr arrrfð Þ ¼ rrr E arrrafð Þð Þ � arrrfð Þrrr Eð Þ: ð8Þ

It follows from equations (1)–(8) thatZ
v

�
fa

�
k2E þ iwm=c 4p=cJ þ rrr lnmð Þ �H½ �ð Þ

� 4p=crrr� J*
�
� E ak2fþrrr arrrfð Þ

� ��
dv

¼
Z
s

E � rrrfð Þ � a� fa� iwm=c H � 4p=cJ*ð Þð Þ

n da: ð9Þ

Using the equation (8), it may be found from equation (9)
that

Z
v

�
iwm=cfa 4p=cJ þ rrr lnmð Þ �H½ �ð Þ � 4p=cf

arrr� J*�rrr E arrrfð Þð Þ þ arrrfð ÞrEÞdv

¼
Z
s

�
E � rrrfð Þ � a½ �½ � � fa

� iwm=cH � 4p=cJ*ð ÞÞnda: ð10Þ

One can obtain using the divergence theorem from
equation (10)

Z
v

�
iwm=cfa 4p=cJ þ rrr lnmð Þ �H½ �ð Þ

� 4p=cfarrr� J*Þ þ arfð ÞrrrEÞdv

¼
Z
s

�
E � rrrfð Þ � a½ �½ � þ E arrrfð Þ

� fa� iwm=cH � 4p=cJ*ð ÞÞn da: ð11Þ

We have identically

n E � rrrfa½ �½ � ¼ a rrrf� E � n½ �½ �;
a�H½ �n ¼ a H � n½ �:

ð12Þ

The next relationship follows from equations (11) and
(12):

Z
v

�
iwm=cfa 4p=cJ þ rrr� lnmð Þ �H½ �ð Þ

� 4p=crrr� J*
�
þ arrrfð ÞrrrEÞdv

¼
Z
s

�
a rrrfð Þ � E � n½ �½ � þ nE arrrfð Þ

þ iwm=cfa n�H½ � þ 4p=cfa J*� n½ �Þda: ð13Þ

Vector a is a common factor at the both sides of
equation (13). Because vector a is arbitrary, it follows
from equation (13) that

Z
v

�
iwm=c 4p=cJ þ rrr lnmð Þ �H½ �ð Þf� 4p=crrr� J*f

þ rrrEð ÞrrrfÞdv

¼
Z
s

½iwm=c n�H½ �fþ n� E½ � � rrrfþ nEð Þrrrf

þ 4p=c J*� n½ �f�da: ð14Þ
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The identity [Stratton, 1941]Z
v

rrr� J*½ �fdv ¼
Z
s

n� J*½ �fdaþ
Z
v

J*�rrrf½ �dv

ð15Þ
reduces equation (14) toZ

v

ðiwmðJ þ rrrðlnmÞ �H½ �Þf� rrr� J*½ �f

þ ðrrrEÞrrrfÞdv

¼
Z
s

iwm n�H½ �fþ n� E½ � � rrrfþ ðnEÞrf½ �da:

ð16Þ
The exclusion of the singularity at r = 0 may be fulfilled
using the method that was described by Stratton [1941].
Under an assumption that the function f has the form f =
eikF(r)/r within a sphere of small radius r, which is
circumscribed about the point (x0, y0, z0), a value of rrrf
may be estimated

rrrf ¼ no 1=r � ikdFðrÞ=dr½ ��eikF rð Þ=r; ð17Þ

where no is unit normal to the spherical surface directed
toward the center of the sphere. The form of the function
F(r) does not have principal importance besides the
requirementsF(r)! 0, and dF(r)/dr is bounded if r! 0.
The area of the sphere vanishes with the radius as 4pr2,
and since

no � E½ � � no þ noEð Þno ¼ E; ð18Þ

the contribution of the spherical surface to the right-hand
side of equation (9) is reduced to 4pE(x0, y0, z0). The
value of E at any interior point of V is therefore
(accounting for equation (3)):

E Að Þ ¼ � 4pð Þ�1

Z
s

�
iwm=c n�H½ �f

þ n� E½ � � rrrfþ nEð Þrrrfgdaþ Ev Að Þ;

Ev Að Þ ¼ 4pð Þ�1

Z
v

�
4p=c iwm=cJf� J*�rrrfð Þ

þ 4pe�1rrrrfþ iw=c rrrm�H½ �f
� rrr lneð ÞEð ÞrrrfÞdv: ð19Þ

An obvious interchange of vectors leads to the
corresponding expression for H(A):

H Að Þ ¼ 4pð Þ�1

Z
s

�
iwe=c n� E½ �f� n�H½ �

� rrrf� nHð ÞrrrfgdaþHv Að Þ;

Hv Að Þ ¼ 4pð Þ�1

Z
v

�
4p=c iwe=cJ*fþ J �rrrfð Þ

þ 4pm�1r*rrrf� iw=c rrre� E½ Þf
� rrr lnmð ÞHð ÞrrrfÞdv: ð20Þ

Equations (19) and (20) describe the electric and
magnetic fields E(A), H(A) at an observation point A in
a general case for the inhomogeneous distributions of the
electric permittivity e and magnetic permeability m. The
terms in the right sides of equations (19) and (20)
containing the external currents J*, J, and charges r*, r
can be considered as the radio waves propagating from
the source of emission.
[6] Let us assume that inhomogeneities are occupying

only a part inside the volume V. The surface S and
remaining part of volume V are located in the homo-
geneous medium. Then the surface integrals of
equations (19) and (20) represent the contributions of
the sources located outside S. If S recedes to infinity in
the homogeneous medium, it may be assumed that these
contributions vanish [Stratton, 1941]. Discarding the
densities of magnetic charges and currents, one obtains
from equations (19) and (20) the formulas

E Að Þ ¼ 4pð Þ�1

Z
v

�
4piwm=c2Jfþ 4pe�1rrrrf

þ iw=c rrrm�H½ �Þf� rrr lneð Þrrrfð Þdv ð21Þ

and

H Að Þ ¼ 4pð Þ�1

Z
v

�
4p=cJ �rrrfþ iw=c E �rrre½ �f

� rrr lnmð ÞHð ÞrrrfÞdv: ð22Þ

Vector equations (21) and (22) depend on the Green
function for inhomogeneous medium f and are different
from that developed by Müller [1969] and Ström [1991].
Equations elaborated by Müller [1969] and Ström [1991]
include the volume integration on the inhomogeneous
part of the medium but contain the Green function for
free space. For the case of homogeneous medium,
rrr(lnm) = rrr(lne) = 0 and the volume integrals (21) and
(22) can be transformed into the known formulas
published by Stratton [1941]:

E Að Þ ¼
Z
v

iwm=c2J exp ikrð Þ=r
�

þ r=errr exp ikrð Þ=rÞdv ð23Þ

H Að Þ ¼
Z
v

1=cJ �rrr exp ikrð Þ=rð Þdv: ð24Þ

The difference between propagation in the inhomoge-
neous medium and free space is clearly seen from
equations (21), (22), (23), and (24). To find the field in
the inhomogeneous medium, one might determine the
Green function f of the scalar wave equation (6) and
then evaluate the volume integrals (21) and (22). The
second terms in the volume integrals (21) and (22)
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depend on the polarization of the radio waves and the
direction of the refractivity gradient. If the electric field is
perpendicular to the gradient of the refractivity, then the
contribution of the respective part of the volume integral
(21) vanishes. It follows that the secondary parts of the
volume integrals (21) and (22) mainly describe the
changes of the directions of the electric and magnetic
vectors in the transverse radio waves, owing to the
refraction effect in the layered atmosphere. The volume
integrals (21) and (22) can also account for different
polarization effects, e.g., the Faraday effect in the
ionosphere, scattering on the atmospheric or ionospheric
turbulence, etc.
[7] Now we will consider the case when the surface S

is located between the transmitter and receiver. In this
case the volume V contains no external sources of
charges and currents within its interior or at its boundary
S, then the fields at an interior point A are (if m = const)

E Að Þ ¼ � 4pð Þ�1

Z
s

�
iwm=c n�H½ �fþ n� E½ �

� rrrfþ nEð Þrrrfgdaþ Ev Að Þ;

Ev Að Þ ¼ � 4pð Þ�1

Z
v

rrr lneð ÞEð Þrrrfdv; ð25Þ

H Að Þ ¼ 4pð Þ�1

Z
s

�
iwe=c n� E½ �f� n�H½ �

� rrrf� nHð ÞrrrfgdaþHv Að Þ;

Hv Að Þ ¼ � 4pð Þ�1

Z
v

iw=c rrre� E½ �fdv: ð26Þ

[8] The last terms in the right sides of equations (25)
and (26) describe the contribution of the inhomogeneous
volume. If the surface S and volume V are located in the
homogeneous part of the space, then one obtains the
vector equations developed early by Stratton and Chu
[Stratton, 1941]:

E Að Þ ¼ � 4pð Þ�1

Z
s

�
iwm=c n�H½ �fþ n� E½ � � rrrf

þ nEð Þrrrf
�
da; ð27Þ

H Að Þ ¼ 4pð Þ�1

Z
s

�
iwe=c n� E½ �f� n�H½ � � rrrf

� nHð Þrrrf
�
da; f ¼ eþikr=r: ð28Þ

The Stratton-Chu formulas (27) and (28) give the
solution of the direct problem: to define the fields inside

the homogeneous volume V if the fields propagating
from the sources of radio emission are known on the
interface S. Equations (25) and (26) give the solution of
the direct problem for the case of inhomogeneous media.
Thus the relationships (25) and (26) generalize the
Stratton-Chu vector equations for description of radio
waves propagation in an arbitrary inhomogeneous
volume. To evaluate the vectors of electromagnetic field
from equations (25) and (26), it is necessary to find the
Green function of 3-D scalar wave equation (6) for an
inhomogeneous medium. This task is simpler than
solution of the vector Maxwell equations (2) and (3)
for electromagnetic fields. This solution can be found by
different ways, depending on the expected structure of
the medium (e.g., WKB method for layered medium,
parabolic equation methods, and geometrical diffraction
methods [Kravtsov and Orlov, 1990; Lukin and Palkin,
1982]).
[9] The relationships (25) and (26) can be applied to

solution of different radio science problems: scattering of
the radio waves on rough surfaces with accounting for the
atmospheric influence [Pavelyev and Kucherjavenkov,
1978], bistatic polarimetric radiolocation of Earth surface
from space [Pavelyev et al., 1996], subsurface radioloca-
tion, etc. For GPS occultation the accuracy of the scalar
theory corresponds to the accuracy of the measurements,
and the scalar theory is quite satisfactory for the case of
quiet ionosphere. The most significant factor that affects
the polarization is the reflection from the surface. The
use of vector theory can thus be important for
the investigation of Earth’s atmosphere by detecting the
surface reflections [Pavelyev and Yeliseyev, 1989].
The possible application also consists of modeling of
radio waves propagation through the ionosphere and
atmosphere in different frequency bands with accounting
for polarization changes connected with Faraday effect
in the ionosphere and scattering on the hydrometeors in
the atmosphere. Equations (25) and (26) are important
for exact evaluation of the influence of 3-D structures in
the electron density in the disturbed ionosphere on
the polarization, amplitude, and phase of the RO
signal.

3. Vector Equations for Radio Fields in

the 3-D Inhomogeneous Medium

(Back Propagation)

[10] For simplicity, let us chose the surface S, which
contains two parallel planes S1, S2 from opposite sides of
the atmosphere and ionosphere (Figure 2). These planes
are perpendicular to plane POG (Figure 2). GPS
transmitter is located in the plane POG (Figure 2)
outside the volume V between the planes S1, S2. It is
important to consider two cases: (1) homogeneous and
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(2) inhomogeneous medium. In case (1) the wave
equation (6) has two solutions f+ = e+ikr/r (for direct-
propagating waves) and f� = e�ikr/r (for back-
propagating radio waves) [Vladimirov, 1971]. If the
Green function f+ is chosen in equations (27) and (28),
then the contribution of the surface S2 to the fields E(A),
H(A) is equal to zero [Stratton, 1941]. Only the surface
S1 gives contribution to the fields E(A), H(A) inside the
volume V. Thus the waves, propagating in the forward
direction, depend on the field distribution on the surface
S1 and do not depend on the field distribution on the
surface S2. This is clear from a physical point of view
because in the homogeneous medium, any gradients of
the physical parameters, scattering, and reflections in the
back direction are absent at the surface S2. Stratton
[1941] did not consider the case of back propagation
corresponding to the Green function f�. However, this
case may be considered by a similar way. For the Green
function f�, which corresponds to the back-propagating
radio waves, only the surface S2 gives the contribution to
the fields E(A), H(A) inside the volume V. Thus two
different types of equations exist for the direct and back-
propagating radio waves in the case of a homogeneous
medium.

Ed Að Þ ¼ � 4pð Þ�1

Z
s1

iwm n�H½ �fþ þ n� E½ � � rrrfþf

þ nEð Þrrrfþgda; ð29Þ

Hd Að Þ ¼ 4pð Þ�1

Z
s1

iwe n� E½ �fþ � n�H½ � � rrrfþf

� nHð Þrrrfþgda; ð30Þ

fþ ¼ eþikr=r; ð31Þ

Eb Að Þ ¼ � 4pð Þ�1

Z
s2

iwm n�H½ �f� þ n� E½ � � rrrf�f

þ nEð Þrrrf�gda; ð32Þ

Hb Að Þ ¼ 4pð Þ�1

Z
s2

iwe n� E½ �f� � n�H½ � � rrrf�f

� nHð Þrrrf�gda; ð33Þ

f� ¼ e�ikr=r: ð34Þ

Equations (29), (30), (32), (33), and Green functions (31)
and (34) describe the electric and magnetic fields Ed(A),
Hd(A); Eb(A), Hb(A) for the direct- and back-propagation
cases if the distribution of the electromagnetic fields is
known at the surface S1 or S2, respectively. The surface
integrals (32) and (33), including the Green function
f�(34), may be named as 3-D vector diffractive integrals
describing the back-propagation of radio waves in a
homogeneous medium.
[11] It is convenient to consider the case (2) under an

assumption that both surfaces S1 and S2 are located
within the homogeneous medium and the inhomoge-
neous part of space is disposed inside the volume V.
Under this assumption the consideration of the case (2) is
similar to one provided for the case (1). As a result, one
can obtain for the direct- and back-propagation fields in
an inhomogeneous medium

Ed Að Þ ¼ � 4pð Þ�1

Z
s1

iwm=c n�H½ �fþ þ n� E½ �f

� rrrfþ þ nEð Þrrrfþgdaþ Evd Að Þ;

Evd Að Þ ¼ � 4pð Þ�1

Z
v

rrr lneð ÞEð Þrrrfþdv; ð35Þ

Hd Að Þ ¼ 4pð Þ�1

Z
s1

iwe=c n� E½ �fþ � n�H½ �f

� rrrfþ � nHð ÞrrrfþgdaþH vd Að Þ;

Hvd Að Þ ¼ � 4pð Þ�1

Z
v

iw=c rrre� E½ �fþdv: ð36Þ

Figure 2. Scheme of the radio holographic remote sensing.
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Eb Að Þ ¼ � 4pð Þ�1

Z
s2

iwm=c n�H½ �f� þ n� E½ �f

� rrrf� þ nEð Þrrrf�gdaþ Evb Að Þ;

Evb Að Þ ¼ � 4pð Þ�1

Z
v

rrr lneð ÞEð Þrrrf�dv; ð37Þ

Hb Að Þ ¼ 4pð Þ�1

Z
s2

iwe=c n� E½ �f� � n�H½ �f

� rrrf� � n�Hð Þ � rrrf� � nHð Þrf�gda
þHvb Að Þ;

Hvb Að Þ ¼ � 4pð Þ�1

Z
v

iw=c rrre� E½ �f�dv: ð38Þ

Equations (35) and (36) describe the field of the direct-
propagating radio waves (index d), and equations (37)
and (38) relate to the case of back-propagating radio
waves (index b). The volume integrals (35) and (36)
introduce the appending contribution to the field of the
direct-propagating waves. In the case of radio occultation
experiments using the GPS radio signals, the volume
contribution introduces mainly the changes in the
orientation of the electric and magnetic vectors because
of the refraction of the transverse electromagnetic waves
in the layered medium. For example, the volume integral
(35) is equal to zero if the electric vector E is oriented
normally to the gradient of the electric permittivity e.
[12] The Green function f� in equations (37) and (38)

must be found as a solution of the wave equation (6). In
general, this solution is accounting for refraction, multi-
beam propagation, diffraction, and scattering effects, and
it may have a very complex form. The Green function f�

can be found by approximate methods (e.g., WKB
method) for regular layered structures in the atmosphere
and ionosphere. Thus equations (37) and (38) present 3-D
radio holographic equations to restore radio fields inside
volume V using known radio fields at its boundary.
[13] Below, the correspondence between the backward

equations developed by Vladimirov [1971], Gorbunov et
al. [1996], and radio holographic equations (37) and (38)
will be established. In the case of the 2-D homogeneous
medium the Green functions f± of the wave equation (6)
have the form [Vladimirov, 1971]

fþ ¼ ipH 1ð Þ
o krð Þ; f� ¼ �ipH 2ð Þ

o krð Þ; ð39Þ

where Ho
(1)(kr), Ho

(2)(kr) are the Hankel’s function of
the first and second kinds, having the asymptotic
representations

H 1ð Þ
o krð Þ ¼ 2=pkrð Þ1=2 exp ikr � ip=4ð Þ;

H 2ð Þ
o krð Þ ¼ 2=pkrð Þ1=2 exp �ikr þ ip=4ð Þ:

ð40Þ

For transition to the 2-D case, it is necessary to change
the surface S2 to the cylindrical surface, which intersects
the plane POG along the orbital trajectory SP (Figure 2).
Then it is necessary to account for the independence of
the electric and magnetic fields H, E in equations (37)
and (38) (and the sources of the fields: electric currents
and charges in the Maxwell equations (2) and (3)) on the
coordinate y and to integrate it. After substituting
equation (40) into equations (37) and (38), one obtains
neglecting the terms �(kr)�1/2

Eb Að Þ ¼ 0:5 ko= 2pð Þ½ �1=2
Z
SP

�m n�H½ � þ n� E½ � � Tf

þ nEð ÞTg exp ip=4� ikrð Þ=r1=2dl; ð41Þ

Hb Að Þ ¼ 0:5 ko= 2pð Þ½ �1=2
Z
SP

e n� E½ � þ n�H½ � � Tf

þ nHð ÞTg exp ip=4� ikrð Þ=r1=2dl; ð42Þ

r ¼ r� r0j j ¼ x� x0ð Þ2þ z� z0ð Þ2
h i1=2

; ð43Þ

where ko is the wave number corresponding to propaga-
tion of radio waves in a vacuum, and T is the unit vector
parallel to the direction on the current integration
element from the observation point.
[14] According to Gorbunov et al. [1996], the back-

propagated field u(x, y, z) is calculated using the
diffractive integral:

u x; y; zð Þ ¼ k=2pð Þ1=2
Z

dsjr � yj�1=2
cosj exp ip=4ð

� ikjr � yjÞuo yð Þ; ð44Þ

where r, y correspond to coordinates of the observation
point A and the current point of integration on the curve
SP along the LEO orbit; j is the angle between vector
r � y and normal to the curve SP (Figure 2) at the current
integration point y; and uo( y) is a scalar field measured
along the orbit of LEO satellite. Equation (44) has been
derived under the assumption that the source of the wave
field (GPS) is stationary and that the LEO orbit is located
in an occultation plane [Gorbunov and Kornblueh,
2001]. The phase factor exp(ip/4 � ikr)/r1/2 in
equations (41) and (42) coincides with the phase factor
in equation (44). Distinction between equations (41) and
(42) and equation (44) consists of the polarization terms
in the right sides of equations (41) and (42), which are
depending on the directions of the electromagnetic fields
measured along the curve SP (Figure 2). Thus the known
2-D scalar equation applied for the solution of the
inverse radio occultation problem is a partial case of the
diffractive vector integrals for 3-D inhomogeneous
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medium. The 3-D equations (41) and (42) are valid for a
general case when the refracted rays have deflections
from the radio occultation plane because of the influence
of the horizontal gradients of the refractivity in the
ionosphere and atmosphere.

4. The Green Function and Reference

Signal for RFSA Method

[15] Now we can establish a connection between the
Green function of the 3-D wave equation and the
reference signal for the RFSA method used early [Hocke
et al., 1999; Igarashi et al., 2000, 2001; Pavelyev et al.,
2002a]. For achieving this aim, we will use the
equations (21) and (22) under the assumption that the
volume integrals terms containing gradient r(lne),
re can be neglected. This assumption is valid, e.g., if
the direction of the electric field in the emitted wave is
perpendicular to the radio occultation plane. The field
along the LEO orbit can be presented in the form

E Að Þ ¼
Z
v

iwm=c2Jfþ r=errrf
� �

dv; ð45Þ

H Að Þ ¼ c�1

Z
v

J �rrrfdv; ð46Þ

where f is a solution of the wave equation (6) for
inhomogeneous medium corresponding to the direct
wave. We assume that the field is emitted by a point
source with unit intensity located at point G (Figure 2).
[16] In general, the solution of the diffraction problem

in layered medium can be presented in frame of the
geometrical diffraction theory [Kravtsov and Orlov,
1990; Lukin and Palkin, 1982] as a sum of the fields
corresponding to M different physical rays

E Að Þ ¼ Aof r; tð Þ;f r; tð Þ ¼
XM
j¼1

Aj pj
� �

exp i wot � kF pj; r;R2

� �� �	 

;F pj

� �
¼

Z
nj lð Þdl;

ð47Þ

where k = 2p/l wo = 2pfo, fo is the carrier frequency of
radio field, nj(l ) is the refraction index distribution along
the jth ray trajectory,M is a number of the ray trajectories
connecting points P and G (M may be a function of time
depending on physical conditions in the atmosphere),
F( pj) is the eikonal [Kravtsov and Orlov, 1990], pj is the
impact parameter of the jth physical ray initiated at the
source, Ao is the complex vector amplitude of the electric
field depending on the intensity and phase of the source,
and Aj( pj) is the complex amplitude of the jth physical
ray normalized to the amplitudes corresponding to the

free space propagation. Aj( pj) depends on the refraction
attenuation in power of jth ray Xj( pj), Aj( pj) = [Xj( pj)]

1/2.
In the case of spherical symmetry the refraction angle of
jth physical ray can be described by equations [e.g.,
Pavelyev and Yeliseyev, 1989] (index j in these equations
is omitted for simplicity of writing):

x pð Þ ¼ A pð Þ � A psð Þ;

A pð Þ ¼ sin�1 p=n R1ð ÞR1ð Þ þ sin�1 p=n R2ð ÞR2ð Þ;

A psð Þ ¼ sin�1 ps=R1ð Þ þ sin�1 ps=R2ð Þ;

ð48Þ

where x(p) is the refraction angle, p is the impact
parameter of physical ray, ps is the free space impact
parameter corresponding to the free space ray GLP
(Figure 2), and n(R2), n(R1) are the refraction indexes at
the point G and P, respectively. The phase path excess
F(p) (the difference between the eikonals relating to the
jth ray and free space ray) may be described by
expression [Pavelyev and Yeliseyev, 1989]

F pð Þ¼L2 pð Þ þ L1 pð Þ�L2 psð Þ� L1 psð Þþ px pð Þ þ k pð Þ;

L1 pð Þ¼ n2 R1ð ÞR2
1 � p2

� �1=2
; L2 pð Þ¼ n2 R2ð ÞR2

2 � p2
� �1=2

;

L1 psð Þ ¼ R2
1 � p2s

� �1=2
; L2 psð Þ ¼ R2

2 � p2s
� �1=2

;

ð49Þ

where F( p) depends on the geometrical terms L1( p),
L2( p), L1( ps), L2( ps), px( p), and main refractivity part
k( p). The value k( p) is connected with refraction angle
x( p) by the relationship [Pavelyev and Yeliseyev, 1989]

dk pð Þ=dp ¼ �x pð Þ: ð50Þ

The central angle q is connected with refraction angle by
equation

q pð Þ ¼ pþ x pð Þ � A pð Þ; ð51Þ

where A(p) is defined in equation (48). Equations (48)–
(51) connect the phase and angular characteristics of the
jth ray. The amplitude of the jth ray is dependent on the
refraction attenuation and may be defined as a ratio X( p)
of the wave intensity in the medium to the intensity in the
free space. Pavelyev and Kucherjavenkov [1978] defined
the refraction attenuation as a ratio Xe( p) of power flow
of radio waves in the medium to the power flow in the
free space. From their formula for Xe( p), one can obtain
the formula for X( p)

X pð Þ ¼ pR2
0 R1R2L2 pð ÞL1 pð Þ sin q½ ��1j@q=@pj�1; ð52Þ

@q=@p ¼ dx=dp� 1=L2 pð Þ � 1=L1 pð Þ; ð53Þ
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where R0 is the distance in free space from the
transmitter to the current point on the jth ray. Note that
equations (48)–(53) are valid for each physical ray in
multipath conditions. Equation (52) is also valid for the
refraction attenuation of the reflected signal [Pavelyev et
al., 1997]. In general, the Green function f in
equation (47) can correspond to the physical rays of
different origin (main ray GMP, refracted multipath rays,
reflected ray GDP (Figure 2), diffracted rays, scattered
rays, and others relating to various physical mechanisms)
having the complex amplitude Aj( pj) and propagating at
different angles bj relative to the line PO.
[17] For the circular orbit and spherical symmetric

medium, the eikonals F(pj) corresponding to the
refraction and reflection mechanisms have a common
property [Pavelyev et al., 1997]:

@F pj
� �

=@pj ¼ pj@q=@pj; ð54Þ

if R1 = const, R2 = const.
[18] The record of the complex radio signal f(r, t)

along the LEO trajectory can be considered as the radio
hologram’s envelope that contains the amplitude A(t) and
phase path excess y(t) = kSe(t) of the radio field as the
functions of time [Pavelyev, 1998; Hocke et al., 1999;
Igarashi et al., 2000]:

f r; tð Þ ¼ A tð Þ exp �iy tð Þ½ �: ð55Þ

The reference signal Em(t) = Am
�1(t)exp[iym(t)] must be

developed to acquire maximum coherence with the RO
signal. The functions Am(t) and ym(t) determine the
parameters of the focused synthetic aperture and spatial
resolution. The phase ym(t) and amplitude Am(t) of the
reference signal must be related to the phase yc(t) and
amplitude Ac(t) of the main (coherent) part of the RO
signal corresponding to the main ray GP. To achieve this, a
model of refractivity in the atmosphere and ionosphere can
be applied. Naturally, the model must be representative to
the actual physical conditions in the radio occultation
region. Without such a model the spatial resolution will
correspond to an unfocused synthetic aperture (Doppler
selection) and will be roughly 0.5–1 km. Igarashi et al.
[2000, 2001] used the amplitude Am(t) = const and an
exponential model to describe the refractivity profile of
the atmosphere with the IRI-95 model for the ionosphere
in the RO region to determine the temporal dependence of
ym(t) and obtained a spatial resolution of about 70 m.
They applied the Fourier transform to the product of the
RO and reference signals to obtain the compressed angular
spectrum W( p(w)) of the RO signal:

W p wð Þð Þ ¼
ZT=2

�T=2

dt f r; tð ÞA�1
m tð Þ exp iym tð Þ½ � exp �iwtð Þ;

ð56Þ

where T is the time of focused synthesis. Equation (56)
describes the compressed angular spectrum of the radio
field W( p(w)) as function of the ray coordinates b and
p (Figure 2).
[19] Integration on time in equation (56) is equivalent

to integration on the central angle q. In the case of
circular orbits of GPS and LEO satellites,

dt ¼ dqW�1 psð Þ;

W�1 psð Þ ¼ 1= R2
1 � p2s

� �1=2þ 1= R2
2 � p2s

� �1=2h i
=v?;

v? ¼ �dps=dt; t ¼ q� qoð ÞW�1 psð Þ; ð57Þ
where W( ps) is the angular speed of relative orbital
motion of the GPS and LEO satellites, v? is the vertical
speed of the point L, and qo is the central angle
corresponding to the time instant t = 0. The eikonal can
be presented as a two-term expansion at q = qo, po = p(qo)
if @q/@p(qo) 6¼ 0:

F p qð Þð Þ �F poð Þ¼ po q� qoð Þþ 0:5 q� qoð Þ2=@q=@p qoð Þ;

ð58Þ

where dependence q( p) is given by relationship (51). The
condition @q/@p(qo) = 0 is fulfilled at the caustics
boundaries where the numbers of rays are changed by
even numbers [Lukin and Palkin, 1982; Kravtsov and
Orlov, 1990]. The partial derivative @q/@p(qo) in
equation (58) is evaluated under conditions R1 = const,
R2 = const.
[20] The main principle of the focused synthetic aper-

ture approach consists of choosing the reference signal
matching in the optimal sense with received signal [e.g.,
Wehner, 1987, section 6.4], so the phase of the reference
signal must have the form similar to that of the phase of
RO signal, corresponding to the main ray trajectory GBP
(Figure 2):

y pm qð Þð Þ � y pm qoð Þð Þ ¼ pm qoð Þ q� qoð Þ þ 0:5 q� qoð Þ2

= @q=@p qoð Þð Þm; ð59Þ

where pm(qo), p(q), and (@q/@p(qo))m, @q/@p(qo) are the
impact parameters and the partial derivatives, respec-
tively, corresponding to the reference signal and physical
ray at the time instant t = 0. After substituting equations
(58) and (59) in equation (56), we can obtain:

W wð Þ ¼
ZT=2

�T=2

dtf r; tð ÞA�1
m tð Þ exp iym tð Þ½ � exp �iwtð Þ

¼
XM1

j¼1

f w; pj
� �

; ð60Þ
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f w; pj
� �

¼
ZD=2

�D=2

dqW�1 psð Þ Xj pj
� �

=Xm pmð Þ
	 
1=2

	 exp
n
i
h
q q� qoð Þ � k F pjo

� �
þ ym pmoð Þ

� �

þ ks q� qoð Þ2
io

; ð61Þ

q ¼ wo � wð ÞW�1 psð Þ þ k pm � pj
� �

;

s ¼ 0:5 1= @q=@pð Þm�1= @q=@pð Þj
h i

;

D ¼ TW psð Þ;

ð62Þ

where f (w, pj) describes the response of the focused
synthetic aperture to the jth physical ray, and D is the
interval of integration on q. Usually the reference signal
is chosen to maximize the response f (w, pj) for coherent
part of the RO signal, corresponding to the main ray
GBP (Figure 2) and having the impact parameter p. To
accomplish this end, the refraction attenuation and the
phase of the reference signal must be close to the same
parameters of the coherent part of RO signal:

Xm pmð Þ � X pð Þ; @q=@pð Þm � @q=@p: ð63Þ

Two conditions (equation (63)) can be fulfilled simulta-
neously because the refraction attenuation significantly
depends on the partial derivative @q/@p (equation (53)). It
follows from condition (63) and equations (56) and
(58)–(60) that the variations in the phase of the reference
signal must be equal to the variations in the phase of the
Green function, and the amplitude of the reference signal
must change inversely with the amplitude of the Green
function. This means that the focus of the focused
synthetic aperture must follow the current position of the
center of curvature of the wave front of the main ray
(disposed at the point G (Figure 2)) if the refractivity
model is exact. If the amplitude and phase of reference
signal are chosen according to condition (63), then the
function f (w, p) has a form:

f w; pð Þ ¼ iD sin qD=2ð Þ½ �= qD=2ð Þ;

q ¼ wo � wð ÞW�1 psð Þ þ k pm qoð Þ � p qoð Þð Þ:
ð64Þ

This function has sharp maximum at the frequency w� wo

equal to

w� wo ¼ kW psð Þ p qoð Þ � pm qoð Þð Þ: ð65Þ

Then we can estimate the impact parameter p(qo) using
given values pm(qo) and W( ps)

p qoð Þ ¼ w� woð Þ= kW psð Þ½ � þ pm qoð Þ: ð66Þ

Thus the found impact parameter p(qo) is a sum of the
impact parameter pm(qo) corresponding to the model of
the refractivity used for the construction of the reference
signal and small part corresponding to deflection of the
maximum value of Fourier component of convolution of
the reference and RO signals.
[21] The accuracy of the estimation dp(qo) depends on

the width of the maximum do, which is determined by the
parameters W(ps) and D. One obtains dp(qo) using the
relationship (62) for q and D and equations (64)–(66):

do ¼ pW psð Þ=D;
dp qoð Þ ¼ do= kDW psð Þ½ �

¼ l= Tv? 1=L1 psð Þ þ 1=L2 psð Þ½ �f g
¼ lR1=La; ð67Þ

La ¼ Tv; ð68Þ
where La is the size of the focused synthetic aperture, and
v in equation (68) is practically equal to the orbital speed
of the LEO satellite. Equations (67) and (68) give
relationships describing the extreme value for the vertical
resolution in the impact parameter p(qo) corresponding to
the case when the amplitude and phase of reference
signal are in full accordance with the phase and
amplitude of the RO signal. For numerical estimation,
we can let La = 20 km, v = 8 km/s, T = 2.5 s, l = 20 cm,
and R1 = 7000 km, then we obtain from equation (67)
that dp(qo) = 70 m. One can obtain the estimation of the
refraction angle x(qo) by substituting the found value p
and known impact parameter ps into equation (48)
[Hocke et al., 1999].
[22] Note that the considered method can evaluate also

the amplitude and phase for each ray in the Green
function spectrum (47) using the relationships (60)–
(62) and choosing the appropriate form for the reference
signal. Thus the radio holographic focused synthetic
aperture method (RFSA), developed early by Pavelyev
[1998], Hocke et al. [1999], Igarashi et al. [2001], and
Pavelyev et al. [2002a], is justified as a method, which
uses the phase and amplitude of the Green function for
the construction of the reference signal.
[23] The distinction of practical application of the

RFSA method for the radar and atmospheric case mainly
consists of the different spatial position of the focus of
the synthesized aperture. In the radar case, this place
coincides with a target on Earth surface or in the
atmosphere. In the case of the atmospheric investigation
the targets are the rays emitted by transmitter and a
position of the focus of the synthesized aperture coin-
cides with the current position of the curvature center of
the corresponding wave front. The task in the radar case
consists of the precise determination of the position of a
target. The task in the atmospheric investigation is the
accurate evaluation of the impact parameters of the rays
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and the corresponding refraction angles [Hocke et al.,
1999; Igarashi et al., 2000; Pavelyev et al., 2002a,
2002b].
[24] Equation (56) can be used for obtaining the radio

images of the atmosphere and terrestrial surface because
connection (65) between the frequency w and the phys-
ical ray impact parameter p is valid owing to coherence
of the rays emitted by the GPS transmitter. The
increasing of the difference in the partial derivatives s
(equation (62)) introduced broadening in the main
maximum of the function f (w, pj) (equation (62)) and
does not change the position of the maximum. Only near
the caustic surfaces where the partial derivative @q/@p is
close to zero, the radio image can blur owing to
broadening of the angular spectrum of the radio waves.
[25] Examples of radio images of the atmosphere and

Earth’s surface are shown in Figure 3. For construction
of the reference signal, an exponential model of the
refractivity has been used: N(h) = No exp(�h/H ), No =
300 (N units), H = 6.3 km. This model corresponds to
single-beam propagation. The images relate to RO event
0392 (5 February 1997; 1354 UT; 56�N, 139�E). The
radio images of the stratosphere in the height interval 8–
22 km (Figure 3) contain mainly sharp peaks having
vertical width �70 m at the half power level. It
corresponds to an angular resolution of about 17–
23 microradians and spatial compression of the RO

signal �1/10 of the Fresnel zone size. The radio
brightness distribution in the boundary layer at a height
of 0–2 km is shown in Figure 3. Negative height values
correspond to the signals reflected from Earth’s surface.
The main peak corresponds to a radio occultation signal
propagating along the path GBP (Figure 2). In the
boundary layer of the troposphere shown in Figure 3, the
spatial compression effect in the main peak is variable
because influence of multipath propagation. The weak
reflected signal is slowly moving toward the main
tropospheric signal. The behavior of the reflected signal
is similar at both GPS frequencies F1 and F2, thus
indicating minimal level of the possible systematic
receiver’s errors. The width of the peaks of the reflected
signals changed in the interval 100–500 m depending on
the time (Figure 3). The maximal width of the tropo-
spheric signal in the boundary layer is �700–1000 m.
The minimal width of spikes in the tropospheric signal is
about of 100 m. These spikes correspond to the terminal
part of the RO event when the main tropospheric signal
is transformed to two sharp peaks, which are clearly seen
both at frequencies F1 and F2 (Figure 3). It follows from
Figure 3 that the vertical resolution of the RFSA method
depends on the degree of coherence of the reference
signal with main RO signal and can be about 70–100 m.
The RFSA method allows one to observe the effects of
the multibeam propagation, which are important for the

Figure 3. Radio images of the atmosphere obtained by the RFSA method. (left) Radio images of
the lower stratosphere and upper troposphere. Radio images of the boundary layer of the
troposphere at frequencies (middle) F1 and (right) F2. The radio images are given in sequence with
time interval 0.32 s. The length of the focused synthetic aperture is �20 km; this corresponds to the
expected value of vertical resolution �70 m at the distance �3000 km.
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theory of radio wave propagation in the atmosphere and
in its boundary layer.

5. GIO, RFSA, CT, and BP Methods

[26] To reveal connections between RFSA, CT, and BP
methods, we apply the Zverev’s transform [Zverev,
1975], connecting the field E( y, z) and its angular
spectrum A(a)

E y; zð Þ ¼
Z

daA að Þ exp ik F a; y; zð Þ �Fj að Þ
	 
� �

;

F a; y; zð Þ ¼ z cosaþ y sina;Fj að Þ ¼ F a; yj; zj
� �

;

ð69Þ

where F(a), Fj(a), yj, zj are the phase function, initial
phase, and initial coordinates of the jth physical ray. The
center of coordinate system y, z coincides with point O,
and axis OY is perpendicular to direction GP (Figure 4).
Integral (69) can be evaluated by method of the
stationary phase (SP) as the sum of the fields of the
physical rays similar to equation (47) in the free space.
We introduce GIO transform I( p):

I pð Þ ¼ k=2p
Z

dhB hð Þ exp ik pf hð Þ � d hð Þ½ �I1 hð Þ;

I1 hð Þ ¼
Z

ds exp �ikhsð ÞR sð ÞE y sð Þ; z sð Þð Þ;
ð70Þ

where I1(h) is the internal operator, R(s) is the reference
signal, B(h) is the amplitude function, d(h) is the
auxiliary phase function, f (h) is the impact function, p
is the parameter, having different physical interpretation
depending on f (h), and s is the path of integration along
the orbital trajectory of the LEO satellite.
[27] The GIO transform can be considered as a gener-

alization of the Egorov’s Fourier integral operator
[Egorov, 1985]. The reference signal R(s) is included in

GIO with aim to compress the angular spectrum and to
account for the form of the orbital trajectory. The
functions f (p,h), B( p,h), d(h) can be arbitrary, and their
physical meaning can be revealed using Zverev’s
presentation for the field (equation (69)). The RFSA
method uses only the operator I1(h) with the reference
signal R(s) = Em(t(s)) in equation (70) and the field
presentation in the form (47) as shown in section 4. The
RFSA method can retrieve the field along the curved
rays (e.g., rays P0E0, PE in Figure 4) with some
approximation depending on the degree of spatial
compression achieved. The RFSA method can recon-
struct the phase and amplitude of the fields in the plane
GOY (Figure 4) and thus obtain the 1-D radio images of
the atmosphere and terrestrial surface. The RFSA
method can account for the motion of GPS transmitter
in any direction and influence of the horizontal gradients
in the ionosphere and atmosphere by means of their
introducing to the refractivity model. However, the
RFSA method requires algorithms for solving the direct-
propagation problem with accounting for the diffraction
effect to achieve maximal spatial compression with aim
to apply the perturbation method to find from experi-
mental data correction to the refractivity profiles.
[28] To obtain connection between the GIO, BP, and

CT methods, we introduce the new coordinate system y0,
z0 with center at point P and oriented at angle g relative
to the coordinate system y, z (Figure 4). The coordinate y0

is reckoned from point P along the tangent to orbital
trajectory of LEO satellite. The coordinates y, z and y0, z0

are connected by equation

y ¼ yp þ y0 cos gþ z0 sin g; z ¼ zp þ z0 cos g� y0 sin g;

ð71Þ

where yp, zp are the coordinates of the point P in the
coordinate system ZOY (Figure 4). Now we can
substitute the integration variable y0 instead of s in the
operator I1(h). After substituting equations (69) and (71)
into equation (70) and changing the order of the integral

Figure 4. Geometrical parameters for the GIO, RFSA, CT, and BP methods. PP0 is the orbital
trajectory of LEO satellite.
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operators one can perform integration on y0 letting z0 = 0,
R(s) = 1:

I1 hð Þ ¼ k=2p
Z

dy0 exp �iky0 h� sin a� gð Þ½ �f g

¼ d h� sin a� gð Þð Þ: ð72Þ

Integration on h in equation (70) gives

E pð Þ ¼
Z

daA að Þ exp ik pf h að Þð Þ � d h að Þð Þ½f

þ zp cosaþ yp sina�Fj að Þ
�
�

B h að Þð Þ;
h að Þ ¼ sin a� gð Þ: ð73Þ

The left part of equation (73) is the field E(p)
transformed by the operator I( p) from the RO signal.
The function d(h) in equation (70) is arbitrary, and one
can chose d(h) in the GIO transform (70) to simplify
equation (73):

d hð Þ ¼ zp cos gþ sin�1 h
� �

þ yp sin gþ sin�1 h
� �

:

ð74Þ

If the origin of the coordinate system y0, z0 is disposed at
the OZ axis and g = 0, yp = 0, then the function d(h) is
equal to zp(1 � h2)�1/2 and coincides with the phase of
the transfer function for free space introduced early
[Zverev, 1975].
[29] The BP case can be obtained from equation (73)

by choosing the impact function f (h) = sin(g + sin�1h) in
the GIO transform (70). In this case, equation (73)
coincides with equation (69), if z = 0, and, as a
consequence, corresponds to the distribution of the field
along the straight line OY, and p has a geometrical sense
of the coordinate y (Figure 4). The second important
partial case is f (h) = g + sin�1h. For the case g = 0, this
function has been found early by the CT method
[Gorbunov, 2002c]. For the second case the SP method
gives a connection between the direction angle aj and
parameter p

p ¼ �zj sinaj þ yj cosaj: ð75Þ

Equation (74) defines p as the distance between the jth
physical ray and the center of the coordinate system,
point O (Figure 4). If the center of global spherical
symmetry of the medium coincides with point O, then p
is the impact parameter of the jth ray. The SP method
gives the next formula for the transformed field

E p; 0ð Þ ¼ A aj

� �
CjB aj

� �
exp ik paj �Fj aj

� �� �	 

; ð76Þ

where Cj is the coefficient describing contribution of the
stationary point corresponding to the jth physical ray.
When the modified refraction index M(r) is a monotonic
function, only one physical ray can correspond to the

impact parameter p. A possibility of the multipath effect
corresponding to monotonic M(r) profiles has been
shown early by Pavelyev [1998]. In this case the GIO can
disentangle the multipath rays expressing the ray
direction angle a as a single-valued function of the
impact parameter p. The CT method has the same
capability as a partial case of the GIO transform. The ray
direction angle a can be determined from equation (76)
by differentiating the phase of the field E( p): a =
dargE( p)/dp [Gorbunov, 2002c]. Note that in this case
the BP method can be a subject of multipath distortion.
In reality, only the centers of the local spherical
symmetry exist for different parts of the ray trajectories
in the ionosphere and atmosphere. In this case the phase
of the field transformed by the GIO, CT, and BP methods
can contain distortion connected with horizontal gradi-
ents in multipath situation [Gorbunov, 2002c].

6. Conclusion

[30] The main result of this paper is elaborating and
preliminary analysis of the 3-D vector radio holographic
equations designed to restore the field distribution in the
inhomogeneous atmosphere and ionosphere. The 3-D
vector equations are obtained for two practically impor-
tant cases: propagation in the forward and backward
directions. The equations relevant to these cases include
distinct Green functions, which are solutions of the 3-D
scalar wave equations for forward and backward propa-
gated field corresponding to the point source. The new
result for forward propagation consists of discovering a
new form of the volume contribution depending on the
Green function relevant to inhomogeneous medium,
the polarization of the radio waves, and the gradient of
the refractivity. This volume contribution can be impor-
tant in some practical applications. In the RO investiga-
tion the volume contribution can be notable in the case of
scattering on the hydrometeors or turbulence. The 3-D
equations for the back-propagated field are new both for
the case of homogeneous and inhomogeneous medium.
In the first case they can be transformed to equation
similar to the 2-D scalar equation for homogeneous
medium, but a distinction exists and corresponds to
vector character of the equations. It is shown that the
phase of the reference signal used in the RFSA method,
developed early with aim to heighten vertical resolution
in analysis of the RO data, must coincide with the phase
of the Green function of the scalar wave equation
corresponding to 3-D inhomogeneous medium. This
substantiated the RFSA principle for the atmospheric
investigation using the RO data. The phase and ampli-
tude of the reference signal are evaluated in the RFSA
method using the model of the atmosphere in the RO
region. This corresponds to approximate the solution of
the wave equation for the Green function. Then the
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necessary adjustments can be made by perturbation
method. As was shown early in this paper, the RFSA
method gives a possibility to find the temporal depen-
dencies of the amplitude, phase, impact parameter, and
refraction angle for each ray in the angular spectrum of
the radio field. The RFSA method is free, in principle,
from difficulties arising with multibeam propagation in
existing methods because it can visualize the physical
rays by the adaptive manner. The RFSA method can be
used for obtaining radio images of the atmosphere and
terrestrial surface in the RO regions with high vertical
resolution �70 m. It follows from comparison of the
GIO, RFSA, BP, and CT methods that the RFSA, BP,
and CT methods are partial cases of the GIO transform.
The GIO transform can be considered as upgraded by
including the reference signal Egorov Fourier integral
operator. The Zverev transform combined with the GIO
transform allows one to reveal a physical sense of the CT
and BP methods and to establish their limitations. In
distinction with the CT method the GIO transform is
valid for any inclination of the orbital trajectory of the
LEO satellite in the RO plane. The GIO transform can be
considered as a practical tool for the application of the
Zverev and Egorov’s Fourier integral operators to the
analysis of the RO data. As follows from our analysis,
the radio holography can be used in future after some
modernization to realize highly precise GPS radio signals
for the purpose of remote sensing of the atmosphere,
mesosphere, and terrestrial surface with high spatial
resolution and accuracy.

[31] Acknowledgments. We are grateful to UCAR for
access to the GPS/MET data. We are grateful to National
Science Council of Taiwan for financial support under the
grants NSC 92-2811-M008-001, NSC 91-2111-M008-029, and
Office of Naval Research (ONR) of the United States under
grant N00014-00-0528. Work has been partly supported by
Russian Fund of Basic Research, grant 03-02-17414.

References

Beyerle, G., and K. Hocke (2001), Observation and simulation

of direct and reflected GPS signals in radio occultation

experiments, Geophys. Res. Lett., 28(9), 1895–1898.
Beyerle, G., K. Hocke, J. Wickert, T. Schmidt, C. Marquardt,

and C. Reigber (2002), GPS radio occultations with

CHAMP: A radio holographic analysis of GPS signal pro-

pagation in the troposphere and surface reflections, J. Geo-

phys. Res., 107(D24), 4802, doi:10.1029/2001JD001402.

Egorov, Y. V. (1985), Lectures on Partial Differential Equa-

tions: Additional Chapters (in Russian), Moscow State Univ.

Press, Moscow.

Gorbunov, M. E. (2002a), Radio-holographic analysis of

Microlab-1 radio occultation data in the lower tropo-

sphere, J. Geophys. Res., 107(D12), 4156, doi:10.1029/
2001JD000889.

Gorbunov, M. E. (2002b), Radioholographic analysis of radio

occultation data in multipath zones, Radio Sci., 37(1), 1014,
doi:10.1029/2000RS002577.

Gorbunov, M. E. (2002c), Canonical transform method for pro-

cessing radio occultation data in the lower troposphere,

Radio Sci., 37(5), 1076, doi:10.1029/2000RS002592.
Gorbunov, M. E., and L. Kornblueh (2001), Analysis and

validation of GPS/MET radio occultation data, J. Geophys.

Res., 106(D15), 17,161–17,169.
Gorbunov, M. E., A. S. Gurvich, and L. Bengtsson (1996),

Advanced algorithms of inversion of GPS/MET satellite

data and their application to reconstruction of temperature

and humidity, Rep. 211, Max-Planck-Inst. for Meteorol.,

Hamburg.

Gorbunov, M. E., A. S. Gurvich, and L. Kornblueh (2000),

Comparative analysis of radio holographic methods of

processing radio occultation data, Radio Sci., 35(4),

1025–1034.
Hocke, K., A. Pavelyev, O. Yakovlev, L. Barthes, and

N. Jakowski (1999), Radio occultation data analysis by radio

holographic method, J. Atmos. Sol. Terr. Phys., 61, 1169–
1177.

Igarashi, K., A. Pavelyev, K. Hocke, D. Pavelyev, I. A.

Kucherjavenkov, S. Matugov, A. Zakharov, and O. Yakovlev

(2000), Radio holographic principle for observing natural

processes in the atmosphere and retrieving meteorological

parameters from radio occultation data, Earth Planets Space,

52, 875–968.
Igarashi, K., A. Pavelyev, K. Hocke, D. Pavelyev, and

J. Wickert (2001), Observation of wave structures in the

upper atmosphere by means of radio holographic analysis

of the radio occultation data, Adv. Space Res., 27(6–7),
1321–1327.

Jensen, A. S., M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen

(2003), Full spectrum inversion of radio occultation signals,

Radio Sci., 38(3), 1040, doi:10.1029/2002RS002763.
Kravtsov, Y., and Y. N. Orlov (1990), Geometrical Optics of

Inhomogeneous Media, Springer-Verlag, New York.

Kunitsyn, V. E., and E. D. Tereshchenko (1991), Tomography

of the Ionosphere (in Russian), Nauka, Moscow.

Kunitsyn, V. E., E. S. Andreeva, E. D. Tereshchenko, B. Z.

Khudukon, and T. Nygren (1994), Investigations of the

ionosphere by satellite radiotomography, Int. J. Imag. Sys.

Technol., 5, 112–127.
Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshleman,

D. P. Hinson, and G. L. Tyler (1987), The atmosphere of

Uranus: Results of radio occultation measurements with

Voyager, J. Geophys. Res., 92(A13), 14,987–15,001.
Lukin, D. S., and E. A. Palkin (1982), The numerical canonical

method for solution of the diffraction problems of the elec-

tromagnetic waves propagation in inhomogeneous media,

Moscow Phys. Tech. Inst., Moscow.

Marouf, E. A., and G. L. Tyler (1982), Microwave edge

diffraction by features in Saturn’s rings: Observations with

Voyager 1, Science, 217, 243–245.

RS4011 PAVELYEV ET AL.: DIFFRACTIVE INTEGRAL FOR RADIOHOLOGRAPHY

15 of 16

RS4011



Miller, M. A., and E. V. Suvorov (1992), Maxwell’s Equations,

Phys. Encycl., vol. 3 (in Russian), Big Russ. Encycl.,

Moscow.

Müller, C. (1969), Foundations of the Mathematical Theory of

Electromagnetic Waves, Springer-Verlag, New York.

Pavelyev, A. (1998), On the possibility of radio holographic

investigation on communication link satellite-to-satellite,

J. Commun. Technol. Electron., 43(8), 126–131.
Pavelyev, A., and A. I. Kucherjavenkov (1978), Refraction

attenuation in the planetary atmospheres, Radio Eng. Elec-

tron. Phys., 23(7), 13–19.

Pavelyev, A., and S. D. Yeliseyev (1989), Study of the atmo-

spheric layer near the ground using bistatic radar, J. Com-

mun. Technol. Electron., 34(9), 124–130.

Pavelyev, A., A. V. Volkov, A. I. Zakharov, S. A. Krytikh, and

A. I. Kucherjavenkov (1996), Bistatic radar as a tool for

Earth investigation using small satellites, Acta Astronaut.,

39, 721–730.
Pavelyev, A., A. I. Zakharov, A. I. Kucherjavenkov, E. P.

Molotov, A. I. Sidorenko, I. L. Kucherjavenkova, and

D. A. Pavelyev (1997), Propagation of radio waves reflected

from Earth’s surface at grazing angles between a low-orbit

space station and geostationary satellite, J. Commun.

Technol. Electron., 42(1), 45–50.

Pavelyev, A., et al. (2002a), First application of the radio

holographic method to wave observations in the upper

atmosphere, Radio Sci., 37(3), 1043, doi:10.1029/

2000RS002501.
Pavelyev, A., Y. A. Liou, C. Y. Huang, C. Reigber, J. Wickert,

K. Igarashi, and K. Hocke (2002b), Radio holographic

method for the study of the ionosphere, atmosphere and

terrestrial surface from space using GPS occultation signals,

GPS Solutions, 6, 101–108.
Stratton, J. W. (1941), Electromagnetic Theory, 616 pp.,

McGraw-Hill, New York.

Ström, S. (1991), Introduction to integral representation and

integral equations for time-harmonic acoustic, electromag-

netic and elastodynamic wave fields, in A Series of Hand-

books on Mechanics and Numerical Methods, Third

Series: Acoustic, Electromagnetic, and Elastic Wave

Scattering, vol. 1, Field Representations and Introduction

to Scattering, edited by V. V. Varadan, A. Lakhtakia, and

V. K. Varadan, chap. 2, pp. 37–141, Elsevier Sci., New

York.

Vladimirov, V. S. (1971), Equations of Mathematical Physics,

Marcel Dekker, New York.

Wehner, D. R. (1987), High Resolution Radar, Ed. Artech

House, Norwood, Mass.

Zeldovich, B. Y., N. F. Pilipeckii, and V. V. Shkunov (1985),

Inversion of the Wave Fronts (in Russian), Nauka, Moscow.

Zverev, V. A. (1975), Radio-optics, Soviet Radio, Moscow.

������������
Y. A. Liou, Centre for Space and Remote Sensing Research,

National Central University, Jung-Li, 320, Taiwan. (yueian@

csrsr.ncu.edu.tw)

A. G. Pavelyev, Institute of Radio Engineering and Electro-

nics, Russian Academy of Sciences, Fryazino, Vvedenskogo

sq. 1, 141191 Moscow, Russia. (pvlv@ms.ire.rssi.ru)

J.Wickert,GeoForschungsZentrumPotsdam,Telegrafenberg,

D-14473 Potsdam, Germany. (wickert@gfz-potsdam.de)

RS4011 PAVELYEV ET AL.: DIFFRACTIVE INTEGRAL FOR RADIOHOLOGRAPHY

16 of 16

RS4011


