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Abstract—Physically based land surface process/radiobright- its dominance on regulating water-uptake by the plants. In
ness (LSP/R) models may characterize well the relationship meteorology, it manages the partitioning of energy and water

between radiometric signatures and surface parameters. They can through evaporation and transpiration at the lower boundary of

be used to develop and improve the means of sensing surface pa-th A h H it has b ter of tint t
rameters by microwave radiometry. However, due to a lack in the € almosphere. f[ence, Ithas been a parameter of great interes

skill to properly understand the behavior of the data, a statistical N the field of microwave remote sensing for decades.

approach is often adopted. In this paper, we present the retrieval ~ Microwave radiometry is the most successful of the remote
of wheat plant water content (PWC) and soil moisture content sensing approaches for sensing soil moisture. Over bare soils,
(SMC) profiles from the measured H -polarized and V-polarized 5 qigprightness at nearly all microwave frequencies are sensi-

brightness temperatures at 1.4 L-band), and 10.65 (X-band) .. . . .
GHz by an error propagation learning back propagation (EPLBP) tive to soil moisture content (SMC) and its state. Wang [2] pro-

neural network. The PWC is defined as the total water content Posed a linear relationship between microwave emissivity and
in the vegetation. The brightness temperatures were taken by the effective thickness of the emitting soil layer of about 1 cm
the PORTOS radiometer over wheat fields through three month gt 5 GHz and 5 cm at 1.4 GHz. Liou and England [3] used a
growth cycles in 1993 (PORTOS-93) and 1996 (PORTOS-96). yysically based model to show the sensitivity of radiometric
Note that, through the neural network, there is no requirement of . ¢ ¢ i ist t mi f ies f 191
ancillary information on the complex surface parameters such as Signatures to solf moisture a& m'crowalve reque_nmes rom 0
vegetation biomass, surface temperature, and surface roughness,85 GHz, and to demonstrate how radiometric signatures are af-
etc. During both field campaigns, the L-band radiometer was fected by the state of soil moisture [4].
used to measure brightness temperatures at incident angles from | ower microwave frequencies must be used to observe SMC
0 to 5C° at L-band and at an incident angle of 50 at X-band. ; ;
The SMC profiles were measured to the depths of 10 cm in 1993 n Ve?e?ate_d areas [], .[t?]].becaus.e t?e optical trgckness Oflthz
and 5 cm in 1996. The wheat was sampled approximately once Vegetation 'ncreases W' Increasing irequency. Ve,r grass.an
a week in 1993 and 1996 to obtain its dry and wet biomass (i.e., Of 3.7 kg/n? biomass it was shown that the vegetation radio-
PWC). The EPLBP neural network was trained with observations brightness weightings are approximately 25%.aband, 90%
randomly chosen from the PORTOS-93 data, and evaluated by at 19 GHz, and 97% at 37 GHz [7], and 50%¢Gtband and
the remaining data from the same set. The trained neural network 0 . ;
is further evaluated with the PORTOS-96 data. 65 (O.atX band [8]. Liouet al.[9] also used a_n LSP/R model of
_ prairie grassland to show that a 19 GHz pixel having a homo-
Index Terms—Neural network, plant water content, soil geneously distributed 50% canopy cover is 40 to 50 K brighter
moisture. than a 50% tiled pixel for a 60-day summer dry-down simula-
tion, and that thd.-band brightness is essentially identical for
l. INTRODUCTION homogeneous and tiled pixels. Hence, the quality of the SMC
OIL moist | il role in hvdrol retrievals fromC- and X -band channels of the Advanced Mi-
q mmf ure Ip ays i crlumi :jo el n y.tro ogy, agr?hnomycrowave Scanning Radiometer (AMSR) onboard the Japanese
~rand meteorology [ .]' n hydrology, It governs e Texyyanced Earth Observing Satellite (ADEOS)-Il and Earth Ob-
distribution of precipitation between infiltration and runoff. erving System (EOS) PM platforms will suffer relative to an
In agronomy, it affects the development of crops throug -band retrieval as canopies thicken. Njoku and Li [10] expect
AMSR retrieval accuracies of 0.06 g/érroughly equal to 8%
Manuscript received August 3, 2001, revised March 11, 2002.Thisworkw9§/ Vomme) f(_)r SMC and 0.15 kgﬁnfor plam water content
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the land-air system, it is valid only at low frequencies wheremitting temperatures of the soil and canopy, the reflectivity of
scattering within the vegetation is low. For example, SMC dhe soil, and the optical thickness of the canopy are all func-
the topmost 3 cm of soil was retrieved with errors 5.3% (byons of the physical temperature and moisture content of the
volume) from PORTOS-93 data and PWC was also retrievedil and canopy. Brightness temperatures of the vegetated ter-
with errors 0.242 kg/th [11]. These retrievals used priorrain are hence nonlinearly dependent on SMC and PWC in ad-
knowledge of surface temperature and crop type as well @ition to their dependence on the other factors, such as soil
brightness temperature measurementé-#and andC-band and canopy temperatures, surface scattering from the soil, and
data atincident angles of 8, 18, 28, and 38&/igneronetal.[12] volume scattering from the canopy ..., etc. Note that improper
further investigated the potential of drband 2-D microwave handling of these factors would potentially degrade the recovery
interferometric radiometer to monitor SMC, PWC, and surfacd SMC and PWC from radiobrightness. For example, the igno-
temperature for the Soil Moisture and Ocean Salinity (SMO®ance of surface scattering from the vegetation—soil interface re-
mission [13] that is based on an innovative two-dimensionallted in underestimate of brightness temperaturés-pblar-
aperture synthesis concept. The objective of the latter stuidgd, L-band at an incident angle of 58ver prairie grasslands
was to optimize the SMOS mission scenario—to meet bolly 12 K [14].

the scientific requirements and technical constraints of the

mission. Apparently, retrieval algorithms that do not requir. Field Measurements

prior information would be a significantly simplification. Field measurements used in this study have been applied in
This study differs from the Wignerost al. [11], [12] re- previous studies [11], [15], [16]. Inevitably, for the convenience
trieval of SMC and PWC from radiobrightness in three aspecist.reading this article, this subsection duplicates some materials
First, no auxiliary information about surface temperature fom the previous studies.
required. Second, no consideration of vegetation scattering isthe field campaigns were conducted over wheat fields
needed. These are possible because vegetation is treated fagoigh three-month growth cycles at the Institut National de
black box in the error propagation learning back propagatigfecherches Agronomiques (INRA) Avignon Remote Sensing
(EPLBP) neural network approach [8]. Since the physics @fst site (4355 N, £53 E) in 1993 (PORTOS-93) and 1996
the problem is ignored, the information is statistical in naturgPORTOS-96). It was manufactured by the Centre National
Statistical treatments require a large number of data to coOFtudes Spatiales of France and Matra Marconi Space in 1990.
all possible situations that might occur. Hence, it is necessagy operating frequencies include 1.4-pand), 5.05, 10.65
to consider the range of the parameters in the input data.(&-band), 23.8, 36.5, and 90 GHz. Its 3-dB and the 20-dB
neural network approach may not properly extract values of thgamwidth were 12%5and 30, respectively. Its calibrations
parameters beyond the range that served as the input. Thafisre made over calm water surfaces and “eccosorb” slabs either
the quality of the extract values may be reduced if the input da§. ambient temperature or immersed in liquid nitrogen. The
do not probably represent the problem of interest. Third, th@librations showed that the measured brightness temperature
proposed PORTOS-93 data trained algorithm is also applieddguld be expressed as a linear function of the radiometer output
the PORTOS-96 data, while the study of Wignerdral.[11] and the coefficients of this function could be kept constant
was only based on PORTOS-93 data. during the whole experiment. Based on this simple calibration
approach, the radiometer absolute accuracy was about 5 K
and 3 K at 1.4 and 10.5 GHz, respectively. Bathv and
V-polarized brightness temperatures were measured, while
A. The Physical System the microwave data used in this study only includéband
The SMC profile is a result of the balance in moisture anb |ggtr;izst:]eemf§g2tléraetsae;tgé_et\)lgzg z;l)rrwiglﬁtsng(s);ntrgfnnng?utrzéhe
energy budgets at the land-air interface and within the soil. If asured in 1993 as shown in Fig. 1. The reasons are threefold
can be characterized by a land surface process (LSP) mo t, brightness temperatures at éS..S and 36.5 GHz are insen—.

;hrat Scool\rl]zzrcgggfd_r(:]'geiggt'ﬂoedql::tﬁnztogcrgg's;tj;grizz & f_ive to soil moisture over the wheat field. Second, brightness
ay vation. u u u mperatures af’-band are unavailable in 1996. Third, the

ergy anq moisturg iqteractions among the air, the .80”’ and t -band radiometer appears to be instable for about 5% of the
canopy if vegetation s present. The consequent soil and CanQ¥asurements. Hence nothing is presented latter using the
radiobrightness fop polarization can be found by [9] '

X-band measurements in 1996.
Note that there is difference in mounting the radiometer in
Ty p=To o(1— Ry(p))e™/" 1993 and 1996. In 1993, the radi(_)meter was m_ounted on a
20-meter crane boom and observations were carried out at dif-
+1e . (1 - C_TO/“) (1 + Rp(u)e_m/”) (1) ferentincidence angles (fron? @ 60° over a large 40< 60 m
wheat field). The look direction of the radiometer was parallel
whereT . is the effective emitting temperature of the soil, Kpr orthogonal to the tillage direction of the bare field plots. In
R, is the Fresnel reflectivity of the moist soil for polarizatioril996, the radiometer was installed on a cross-bar system at a
p; 7o is the optical thickness of the canopy, nepers (Np)s height of about five meters. To avoid measuring the instrument
the cosine of the incident angle, degrees; dpd is the ef- self-emission at low incidence angles, the measurements were
fective emitting temperature of the canopy, K. The effectivebtained over a limited range of incidence angles (30 .55

Il. RETRIEVAL DESCRIPTION
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Fig. 1. L-band andX-band brightness temperatures measured in (a) 1993 and ()

(b) 1996. The numbers 30 and 50 are the viewing angles in degrees. Fig. 2. Total fresh biomass, water content, and dry biomass of the wheat
vegetation through three month growth cycles in (a) 1993 and (b) 1996.

The field plot consists of silty clay loam soil with 62% silt, TDR) method [20]. Six TDR probes were installed in the
11%.sand an.d-27°./o clay. A large range of SMC c.onditions We\%v%eat field at a dept.h of about 3 cm. Their measurements pro-
obtained by irrigating the field and, then, letting it dry out (d%ide an estimate of the volumetric SMC of top 0-5 cm layer

d diti d during th i t). How-. . ; o
and sunny conditions occurred during the experiment) il temperature was automatically measured with platinum
ever, the surface SMC conditions were spatially ratherhetero%]géistance temperature probes or thermocouples. Ten probes
neous over the fields especially during extreme con.ditions (i'S\/’ére installed in the soil at different depths from aBout 0.5cm
very dry and very wef) [17]. It was observed that moist spots rte— 1 meter at depth. The soil temperature was measured con-
mained in dry conditions and puddles occurred just after rainf?ﬁrtuously and averaéed every 10 min. Vegetation was sampled
or irrigation events. Hence, gravimetric moisture sampling ma%/ proximately weekly both in 1993 aﬁd in 1996 to obtain dry
not be representative of the actual SMC conditions at the fie ﬁd wet biom water content. heiaht. volume fraction. and
scale during extreme conditions. The accuracy in volumetfit et C}tﬁss’ atet' content, elg ,ddc')t'u € t?]c 0 ’la.‘
SMC measurements was estimated to be about 4% during rzecr)en:jer;)(/jigmefe;/?gelzrls)n V\(/::sncr)r?gﬁnrt]ez orl1 |tc:1r;, ?ranzrrgjorlr?-
whole experiment. The soil variables were sampled regular . B .

) P . . npled reg tg monitor the surface temperature concurrently with the ra-
during the campaign. Concurrently with the radiometric Obseéiometric measurements
vations, SMC profiles were obtained from gravimetric measure- '

ments (3 to 5 replications) at several depth intervals (0-0.5 CMomass of the wheat from day of year (DoY) 110 to 190
0-1cm, 1-2cm, 2-3cm, 3-4cm, 4-5cm, 5-7cmand 7-10 ¢ .
in 1993 and 0-0.5 cm, 01 cm. 1-2 cm, 2-3 cm. 35 cm? 1993 (seeding was performed on DoY 78 and harvest

. . Was done shortly after DoY 190). Fig. 2(b) shows total fresh
1996). These gravimetric measurements were converted iB8mass. PWC. and dry biomass of the wheat from DoY 79

volumetric soil moisture using the measured dry bulk densify 153 in 1996 Fig. 2(a) and (b) show that the wheat biomass
ps for each field plot. Vertical profiles of, were obtained from s much heavier in 1996 than in 1993. The maximum total
a transmission gamma-ray technique [18] at different depthsgjash piomass (PWC) is 3.33 (2.61) kg/im 1993, and 4.60
soil [19]. The value ofp, at the soil surface (mean value ovey3 38) kg/n? in 1996. While the PORTOS-96 data could
the 2-4 cm depth interval) is about 1.35 gfcin 1993 and have extended the PORTOS-93 data to a larger range of
1.27 glent in 1996. vegetation biomass, there were no radiometric observations

Additional measurements of SMC were obtained for atlver a significant portion of the PORTOS-96 experiment
measurement dates using the time domain reflectrome(ffom DoY 109 to 144).

Fig. 2(a) shows the total fresh biomass, PWC, and dry



LIU et al: RETRIEVAL OF CROP BIOMASS AND SOIL MOISTURE

C. Neural Network

Neural networks are known for their ability to handle non-
linear mapping problems. Lioat al. [21] applied a dynamic
learning neural network to demonstrate the capability of the
L-band radiometry in sensing soil moisture based on the LSP/R

1263

number 100 of training epochs (repetitions) is reached.
This condition is rarely applied in this study. Second, the
gradient of the training performance falls bellow 1.
Third, over-training occurs. This is recognized when vali-
dation errors increase for a specified number of iterations.

Fourth, the training performance has been minimized to
zero. Fifth, the tuning index of Levenberg—Marquardt op-
timization exceeds 0.

5) Apply the EPLBP neural network to the testing data and
record the results or retrievals. The retrievals are then

model simulations for the HYDROSTAR mission proposed by
Englandet al. [22]. Recently, the EPLBP neural network was
used to retrieve surface soil moisture from simulated brightness
temperatures for a variety of frequency and viewing angle com-
binations [8]. The combinations consist of AMSR’s two lowest ) =
channels for a viewing angle of $%nd L-band for multiple analyzed and used to provide the statistics (RMSE and
viewing angles of 0, 10, 20, 30, 40, and°5@ was shown that weighted RMSE) presented in the following.

the sensitivity of the AMSR channels to soil moisture is in- As & practical extension, the trained neural network is also
creased by incorporatink-band signal, and that dirband 2-D  used to recover SMC and PWC from the PORTOS-96 data. It
(two look angles) or a multiple dimensional observation modg found that the accuracy of the retrievals is low with errors
is superior to aiL-band 1-D (one look angle) observation mod@round 0.6 to 0.8 kg/fon average if we do not filter all data
for sensing SMC. The maximum retrieval error is only 1.76% 1996 with a biomass larger than in 1993. The associated low-
(by volume) for all of the studied cases even though Gaussi@wality retrievals are not further presented. Results presented in
distributed noises with standard deviation as large as 2 K dhg following are obtained after performing the filtering.

added to the simulated instrumental noises. The retrieval error is

relatively low because model simulations present well-definédl Observation Modes

relationship between soil moisture and brightness temperaturegzased on the data management addressed in the previous sub-
Since the correlation relationship of concern in nature cannot §ction, there are in total 13 observation (i.e., input-data) modes.

completely defined by physical modeling, it is of great interégjote that both horizontal and vertical brightness temperatures
to reexamine the radiometric sensing of soil moisture based &% ysed in the retrieval.

field measurements. . 1) OneX-band observation mode—Radiometric measure-
Inthis paper, the EPLBP neural network is used not only to re- ments at¥-band at an incident angle of 50

trieve SMC from the observed brightness temperatures based OQ) Three L-band 1-D (one look angle) observation

the similar observing configurations studied by Lietal. [8], modes—Radiometric observations #tband at an-

but also to infer PWC. More details about the implementation gles of either 30, or 40, or B0Each angle corresponds

of the EPLBP neural network are referred to Lietal. [8]. We to oneL-band 1-D observation mode.

use some of the PORTOS-93 data to train and “validate” (to be3) Three L-band 2-D (two look angles) observation

explained in the next subsection) the neural network and apply * ,0des—Radiometric observations &tband at two
it to the remaining PORTOS-93 data as representative of wheat angles of either 30 and #por 40 and 50, or 30 and

biomass less than 3.33 kg/nThe measurements are managed 50°. Each combination of two angles corresponds to one

as foIIows.. _ L-band 2-D observation mode.
1) Obtain the measured brightness temperatures (Th), SMC4) Six integratedX - and L-band observation modes—Ra-
and PWC. diometric observations aX-band combined with those

2) Form a data setto be further processed and analyzed. The prepared in steps 2, and 3 to become integrafelband
measurements of Th, SMC, and PWC that are simultane-  andZ-band multiple dimensional observation modes.

ously available in the same day are chosen. The measure-
ment time was typically between 12:00 and 17:00.

3) Normalize the data to fall into the range between 0 and
1. The data are assumed to be Gaussian distributed ZndCorrelation Between Brightness Temperatures and Surface
offset by their average. Parameters

4) Allocate the observed data randomly into three groups, The observed brightness temperatures are used to infer SMC
namely training, “validation,” and testing, with approxi-and PWC. Their correlation with surface parameters indicates
mately one half, one quarter, and one quarter of the data,some degree how good the retrieval quality can be achieved.
respectively, but for SMC retrievals the data used for vaFable | compares the correlation coefficients between bright-
idation are also used in testing due to relatively limitedless temperatures At and X-band and SMC in the topmost
numbers of the data. Note that only PORTOS-93 data &em of soil layers. Three major features are observable. First,
used in training and “validation,” but both PORTOS-93Y-band is less sensitive to SMC thdnband because wheat
and -96 data are used in testing. The term “validatiorfanopy appears to be optically thick. The correlation coeffi-
is used since the scheme of “early stopping with validaients are low,—0.222 and-0.272, for theX-band cases, but
tion” is adopted to avoid over-training of the neural nethigher than—0.615 for theL-band cases. Second, the correla-
work. The training process is stopped if any of the foltion coefficients are slightly higher in 1996 than in 1993 by 0.1
lowing five conditions exists [23]. First, the maximumor so. Note that the measurements were taken during the whole

I1l. RESULTS AND DISCUSSION
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TABLE |
CORRELATION COEFFICIENTBETWEEN BRIGHTNESSTEMPERATURES ATL- AND X -BAND AND SMC IN THE TOPMOST5 cmMOF SOIL LAYERS

Frequency L-BAND X-band
Polarization \" H v H
Year  Depth\angle 30° 40° 50° 30° 40° 50° 50° 50°
1993 0-5 -0.768  -0.761  -0.615 -0.764 -0.777 -0.731 -0272 -0.222
1996 0-5 -0.864 -0.791 -0.753  -0.919 -0.905 -0.773 NA NA
TABLE I

CORRELATION COEFFICIENT BETWEEN BRIGHTNESSTEMPERATURES ATL- AND X -BAND AND VEGETATION BIOMASS

Frequency L-BAND X-band
Polarization \'% H v H
Year Angle 30° 40° 50° 30° 40° 50° 50° 50°
Total 0.647 0739  0.731 0469 0543 0.565  0.671  0.760
1993 Water 0.611 0701  0.669 0511 0584 0578 0475  0.585
Dry 0.533 0598 0627 0219 028 0360 0816 0.836
Total 0.192 0479 0366 0327 0.8  0.197 NA NA
1996 Water 0.267 0560 0405 0377 0275 0429 NA NA
Dry 0.062 0266 0218 0185 0045 0102 NA  NA
growth cycle of the wheat in 1993 but not in 1996. As mer,, %86
tioned, brightness temperatures are unavailable from DoY 1‘5 0.05 —t—93' 30
to 144 in 1996 during which period the wheat is growing an™® o.04 93" 40
healthy, and appears to have higher masking effect on the tra% 0.03 —'—93: 50
mission of microwave emissions from soil to the radiometes g4, ) E : z:' ig
Third, the higher the viewing angle, the lower the correlatio@ 0.01 - @ = 9650
betweenL-band brightness and SMC. For example, the correIE

tion coefficients are-0.919 at 30, —0.905 at 40, and—0.773
at 5@ for the H-polarizedL-band cases.

Table 1l shows correlation coefficients between brightne:
temperatures ak- and X-band and vegetation biomass. Nott

05 15 25 35 45 6 85
Depth, cm

that microwave emission from wheat is information here b - 0.06
noise for the problem of sensing SMC. Consequently, compar & ©.05 —l—=93' 30-40
to Table I, Table Il shows three similar but opposite character ﬁ 0.04 iy 93" 40-50
tics. First,X-band is more correlated with vegetation biomas § 0.03 —8-——93'30-50
than L-band. Second, the correlation coefficients are lower % = O = 96'3040
1996 than in 1993. Third, the higher the viewing angle, tr & *® = & = 96'40-50
higher the correlation betweelrband brightness and vegeta: g 01 = @ - 96'30-50
tion biomass. -

05 15 25 35 45 6 85
B. Retrieval of Soil Moisture Content Depth, cm

The rms errors (RMSES) in the retrieved SMC versus depﬂ% 3. The rms errors (RMSES) in the retrieve_d SMC versus depth for Fhe
. . L-band: (a) one-dimensional (1-D) and (b) two-dimensional (2-D) observation

are shown in Fig. 3 for thé-band (a) 1-D and (b) 2-D Obser'modes. The numbers 30, 40, and 50 are the viewing angles in degrees with that
vation modes. Two characteristics are observed. First, RMS&sand 96represent the years of 1993 and 1996, respectively.
scatter over a larger range for 1996 than 1993 possibly because
the neural network is trained with the 1993 data only. Seconmh) predictions from theoretical models. Note that the RMSEs
RMSEs locate in the regions with larger magnitudes for tha the depths below 5 cm for tHeband 2-D observation mode
L-band 1-D than 2-D observation modes between depths 0 ard relatively high sincé-band is essentially losing sensitivity
5 cm. The only outlier is that the RMSE at the depth of 4.5 cto SMC, and hence associated measurements are not further
(4-5 cm) for theL-band 2-D observation mode is relativelyconsidered.
high. These results indicate that the quality of the retrieval is The RMSEs are then used to compute weighted RMSE
higher for theL-band 2-D than 1-D observation modes. Such @/RMSE) with weighting linearly dependent on the thickness
finding is consistent with that observed by Lietial.[8] based of each soil layer. Fig. 4 shows the WRMSEs for thdand
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TABLE Il
NUMBERS OFMEASUREMENTSUSED TOTRAIN, VALIDATE , AND TEST THEEPLBP NeURAL NETWORK FORSMC RETRIEVALS

Frequency L- BAND X-band
Mode 1D 2D 1D
Year  Angle 30° 40° 50° 30°-40° 40°-50° 30°-50° 50°
1993 Train 8 10 7 5 6 5 5
Test® 7 6 4 8 3 5 5
1996 Test 3 4 4 3 3 2 NA

"*ROUGHLY HALF OF THE “TEST” DATA ARE USED IN VALIDATION.

093’ E96'

0.059 g

£ .05 A 3:;47 0.048 [ ::’ g-gi 004t o= 0.037
o 0.041 ‘ 2 003
U 0.04 H : 0.036_0.0 | 2 .
E ¥ - g ; = 002
£ 0.03 E E — @ 0.1
= = LEH bpro 3 E )
< 0.02 g % i 30 40 50 30-40 40-50 30-50
; 0.01 M % % % - View Angle, Degree

£ H - : Fig. 5. WRMSE in the retrieved SMC for the integrat&dband andL-band

1-D/2-D observation modes in 1993. The numbers indicate the magnitudes of
30 40 S50 30-40 40-50 30-50 50(X) the WRMSEs.

View Angle, Degree

Fig. 4 WRMSESs in the retrieved SMC for the-band 1-D and 2-D, and the results presented in Figs. 3 and 4 are typical and represent a
X-band 1-D observation modes. The numbers indicate the magnitudes of g@neral trend for the performance of the neural network.

WRMSEs. Fig. 5 shows WRMSE in the retrieved SMC for the integrated
X- and L-band 1-D/2-D observation modes in 1993. A com-
1-D and X-band observation modes, and thieband 2-D Parison between Figs. 4 and 5 shows that the quality of the
observation modes. The numbers indicate the magnitudé§ieval is slightly improved for theé.-band 1-D observation
of the WRMSESs. RMSEs for the topmost 5 cm soil Iayer@‘Odes’ but considerably for the 2-D observation modes with
(0-1 cm, 1-2 cm, 2-3 cm, 3-4 cm, 4-5 cm in 1993 and 01 cicorporation of theX -band signals. The mean errors are re-
1-2 cm, 2-3 cm, 3-5 cm in 1996) are used to compute tAECed from 0.043 g/cinto 0.042 g/cm for the L-band 1-D
WRMSEs sinceL-band becomes less sensitive to SMC &Pservation modes, and from 0.038 gfcta 0.031 g/cm for
depths between 5 and 10 cm. Generally speaking, there isthg L-band 2-D observation modes. Although this is not totally
specific look angle of concern found to be the best for sensifg§me as the previous experience [8] whereXhband signal
SMC. Table 1l shows the numbers of measurements usedif@roved the quality of the retrieval for any specific observation
train, validate, and test the EPLBP neural network for Sm@ode of interest, th&(-band signal does in general add addi-
retrievals. The numbers are not too many since tremenddigal values tal-band 1-D and 2-D radiometry. The reasons
work is required to collect all the parameters of interest. Thd9r the disagreement are at least twofold. First, biomass varies
are relatively small in 1996 due to the above-mentioned di4er alarge range in the current study, but constant in etal.
filtering and unavailable data for a significant portion of field8]- Second,X-band is essentially insensitive to SMC under the
campaign. Three encouraging characteristics are obseni&fjétation in this study as shown in Table I. Apparently, field
First, the largest WRMSE of 0.059 g/émoccurs for the Mmeasurements used to cross check the results from theoretical
X-band observation mode because of its insensitivity to syRimulations are crucial. Table IV shows the numbers of measure-
over vegetated terrains. Second, WRMSEs are larger for fments used to train, validate, and test the EPLBP neural network
L-band 1-D (from 0.034 to 0.048 g/énaverage 0.041 g/chn with incorporation ofX -band signals for SMC retrievals.
or 5% by volume) than 2-D (from 0.019 to 0.041 gfgm . .
average 0.034 g/chor 4% by volume) observation modesC: Retrieval of Vegetation Water Content
Third, but not least important, the accuracy in the retrieved RMSE in the retrieved PWC for thé-band 1-D and 2-D,
SMC is good not only for the 1993 cases, but also for the 19898d X -band observation modes are plotted in Fig. 6. Itis clearly
cases. The averages of the errors are about 0.0413géem seen thaf.-band 2-D radiometry is superior #-band 1-D ra-
5% by volume for all cases in 1993, and about 0.034 g/cndiometry for sensing PWC. For example, the RMSE ranges from
or 4% by volume in 1996. These inter-comparison results a®e&233 to 0.313 kg/mfor the L-band 1-D observation modes,
consistent with those found by Licet al.[8]. Note that while and from 0.095 to 0.224 kg/hfor the L-band 2-D observation
results from the neural network vary from one test to anothenodes in 1993. The exception is that RMSE is relatively high at
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TABLE IV
NUMBERS OF MEASUREMENTS USED TO TRAIN, VALIDATE, AND TEST THE EPLBP NEURAL NETWORK
FOR SMC RETRIEVALS WITH INCORPORATION OFX -BAND SIGNALS

Frequency L-band + X-band
Mode 1D 2D
Year Angle 30° 40° 50° 30°-40° 40°-50° 30°-50°
Train 6 8 5 6 5 5
1993
Test? 8 7 5 6 3 4
TABLE V

NUMBERS OFMEASUREMENTSUSED TOTRAIN, VALIDATE, AND TEST THEEPLBP NEURAL NETWORK FORPWC RETRIEVALS

Frequency L- BAND X-band
Mode 1D 2D 1D
Year Angle 30° 40° 50° 30°-40°  40°-50°  30°-50° 50°
Train 21 16 13 15 11 13 25
1993  Validate 7 11 7 6 7 5 9
Test 6 6 7 8 3 6 11
1996 Test 4 5 6 4 4 3 NA
ooy B9 ‘ B 93'+X
by -
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Fig. 7. RMSE in the retrieved PWC for the integrat&dband andl-band
1-D/2-D observation modes in 1993. The numbers indicate the magnitudes of

Fig.6. RMSE in the retrieved PWC for tHeband 1-D and 2-D, an -band  the RMSEs.
observation modes. The numbers indicate the magnitudes of the RMSEs.

View Angle, Degree

The average errors were 0.259 kg/for the integratedy -band

0.489 kg/ni for the L-band 2-D case in 1996. Itis also seen tha§ng 7,-band 1-D observation modes and 0.137 Kyfior the
the quality of retrieval from thé.-band 2-D radiometry is rather jntegrated X -band andL-band 2-D observation modes. A
good in 1993, and satisfactory in 1996 even though the neugdimparison between Fig. 6 and 7 shows tAaband adds
network is trained by the PORTOS-93 data only. The averagggitional values toL-band 1-D and 2-D radiometry for
errors on PWC were only about 0.239 kg#r0.160 kg/nt in  sensing PWC for all observation modes. Table VI lists the
1993 and 0.319 kg/fnin 1996. The errors are the largest for theyymbers of measurements used to train, validate, and test the
X-band observation mode because the brightness temperatgi8EBp neural network for PWC retrievals with incorporation
are relatively weakly correlated with PWC. The RMSE in thgf x-pand signals.
retrieved PWC from¥ -band data is 0.371 kghvin 1993. The
numbers of measurements used to_ train, vali(_jate, _and test the IV. CONCLUSIONS
EPLBP neural network for PWC retrievals are listed in Table V.
Reasonable numbers of observations are used in 1993 althoughhis paper investigates the retrieval of SMC and PWC
there are fewer measurements in 1996. from the brightness temperaturesiaband andX-band, and

Fig. 7 shows RMSE in the retrieved PWC for the integrateiieir combination based on the measurements taken during
X-band andZ-band 1-D/2-D observation modes in 1993the PORTOS-93 and -96 field campaigns. There are in total
Overall speaking, the quality of the retrieved PWC is ver¥3 observation modes considered. We find that rather good
good. In addition, as expected, the errors are smaller for thedrievals can be obtained for both SMC and PWQ.iband
integrated X -band L-band 2-D than 1-D observation modes2-D radiometry is utilized. It has been shown the average errors
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TABLE VI

1267

NUMBERS OF MEASUREMENTS USED TO TRAIN, VALIDATE, AND TEST THE EPLBP NEURAL NETWORK
FOR PWC RETRIEVALS WITH INCORPORATION OFX -BAND SIGNALS

Frequency L-band + X-band
Mode 1D 2D
Year Angle 30° 40° 50° 30°-40° 40°-50° 30°-50°
Train 16 16 7 15 10 12
1993 Validate 13 8 13 7 6 4
Test 4 8 6 6 4 7

are about 4% by volume for the retrieved SMC and 0.239 Rg/m [6]
for the retrieved PWC (0.160 kghrin 1993 and 0.319 kg/fn
in 1996). These retrievals are especially satisfactory andy
convincing on the 1996 cases even though the neural network is
trained by the 1993 data only, and hence make us feel confident
in the retrievals through the neural network approach. 8]
In addition, results demonstrate that thédand 2-D radiom-
etry provides higher quality retrieval of SMC and PWC than the [9]
L-band 1-D radiometry as proved in a previous study by Liou
et al. [8] who utilized simulated brightness temperatures anci !
SMC predicted by the LSP/R models. It is further shown tha
the X-band signals are in general helpful to improve the quality
of the retrieved SMC and PWC froixband radiometry.
Furthermore, it is shown that the vegetation has a larger
masking effect on theX-band’s sensitivity to SMC than the
L-band. Among the thirteen studied observation modes th[elz]
maximum WRMSES/RMSEs in the retrieved SMC and PWC
occur for theX-band observation mode. The associated errorﬁ:ﬂ
are 0.059 g/crhfor SMC, and 0.371 kg/mPWC in 1993. In
contrast, the WRMSES/RMSEs may be minimized when the
L-band 2-D observation modes (with or without incorporation[l4]
of X-band signals) are utilized. They are only 0.031 gfan
4% by volume for SMC, and 0.137 kgfnfor PWC for the

integratedX -band andL-band 2-D observation modes. [15]
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