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Abstract—Physically based land surface process/radiobright-
ness (LSP/R) models may characterize well the relationship
between radiometric signatures and surface parameters. They can
be used to develop and improve the means of sensing surface pa-
rameters by microwave radiometry. However, due to a lack in the
skill to properly understand the behavior of the data, a statistical
approach is often adopted. In this paper, we present the retrieval
of wheat plant water content (PWC) and soil moisture content
(SMC) profiles from the measured -polarized and -polarized
brightness temperatures at 1.4 ( -band), and 10.65 ( -band)
GHz by an error propagation learning back propagation (EPLBP)
neural network. The PWC is defined as the total water content
in the vegetation. The brightness temperatures were taken by
the PORTOS radiometer over wheat fields through three month
growth cycles in 1993 (PORTOS-93) and 1996 (PORTOS-96).
Note that, through the neural network, there is no requirement of
ancillary information on the complex surface parameters such as
vegetation biomass, surface temperature, and surface roughness,
etc. During both field campaigns, the -band radiometer was
used to measure brightness temperatures at incident angles from
0 to 50 at -band and at an incident angle of 50 at -band.
The SMC profiles were measured to the depths of 10 cm in 1993
and 5 cm in 1996. The wheat was sampled approximately once
a week in 1993 and 1996 to obtain its dry and wet biomass (i.e.,
PWC). The EPLBP neural network was trained with observations
randomly chosen from the PORTOS-93 data, and evaluated by
the remaining data from the same set. The trained neural network
is further evaluated with the PORTOS-96 data.

Index Terms—Neural network, plant water content, soil
moisture.

I. INTRODUCTION

SOIL moisture plays a crucial role in hydrology, agronomy,
and meteorology [1]. In hydrology, it governs the re-

distribution of precipitation between infiltration and runoff.
In agronomy, it affects the development of crops through
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its dominance on regulating water-uptake by the plants. In
meteorology, it manages the partitioning of energy and water
through evaporation and transpiration at the lower boundary of
the atmosphere. Hence, it has been a parameter of great interest
in the field of microwave remote sensing for decades.

Microwave radiometry is the most successful of the remote
sensing approaches for sensing soil moisture. Over bare soils,
radiobrightness at nearly all microwave frequencies are sensi-
tive to soil moisture content (SMC) and its state. Wang [2] pro-
posed a linear relationship between microwave emissivity and
the effective thickness of the emitting soil layer of about 1 cm
at 5 GHz and 5 cm at 1.4 GHz. Liou and England [3] used a
physically based model to show the sensitivity of radiometric
signatures to soil moisture at microwave frequencies from 19 to
85 GHz, and to demonstrate how radiometric signatures are af-
fected by the state of soil moisture [4].

Lower microwave frequencies must be used to observe SMC
in vegetated areas [5], [6] because the optical thickness of the
vegetation increases with increasing frequency. Over grassland
of 3.7 kg/m biomass it was shown that the vegetation radio-
brightness weightings are approximately 25% at-band, 90%
at 19 GHz, and 97% at 37 GHz [7], and 50% at-band and
65% at -band [8]. Liouet al.[9] also used an LSP/R model of
prairie grassland to show that a 19 GHz pixel having a homo-
geneously distributed 50% canopy cover is 40 to 50 K brighter
than a 50% tiled pixel for a 60-day summer dry-down simula-
tion, and that the -band brightness is essentially identical for
homogeneous and tiled pixels. Hence, the quality of the SMC
retrievals from - and -band channels of the Advanced Mi-
crowave Scanning Radiometer (AMSR) onboard the Japanese
Advanced Earth Observing Satellite (ADEOS)-II and Earth Ob-
serving System (EOS) PM platforms will suffer relative to an

-band retrieval as canopies thicken. Njoku and Li [10] expect
AMSR retrieval accuracies of 0.06 g/cm(roughly equal to 8%
by volume) for SMC and 0.15 kg/mfor plant water content
(PWC) in regions of PWC less than approximately 1.5 kg/m.
These relatively low standards of the retrieved SMC and PWC
are a result of the relatively weak sensitivity to SMC in vege-
tated areas at the higher microwave frequencies.

The masking effects of the vegetation are often managed
through simplifying assumptions. Wigneronet al. [11], [12]
adopted a two-parameter (optical thickness of the vegetation
layer, , and single scattering albedo,) model to describe the
emission of the vegetated fields. Since the model is essentially
a zeroth-order solution to the radiative transfer equation within
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the land-air system, it is valid only at low frequencies where
scattering within the vegetation is low. For example, SMC of
the topmost 3 cm of soil was retrieved with errors 5.3% (by
volume) from PORTOS-93 data and PWC was also retrieved
with errors 0.242 kg/m [11]. These retrievals used prior
knowledge of surface temperature and crop type as well as
brightness temperature measurements at-band and -band
data at incident angles of 8, 18, 28, and 38. Wigneronet al.[12]
further investigated the potential of an-band 2-D microwave
interferometric radiometer to monitor SMC, PWC, and surface
temperature for the Soil Moisture and Ocean Salinity (SMOS)
mission [13] that is based on an innovative two-dimensional
aperture synthesis concept. The objective of the latter study
was to optimize the SMOS mission scenario—to meet both
the scientific requirements and technical constraints of the
mission. Apparently, retrieval algorithms that do not require
prior information would be a significantly simplification.

This study differs from the Wigneronet al. [11], [12] re-
trieval of SMC and PWC from radiobrightness in three aspects.
First, no auxiliary information about surface temperature is
required. Second, no consideration of vegetation scattering is
needed. These are possible because vegetation is treated as a
black box in the error propagation learning back propagation
(EPLBP) neural network approach [8]. Since the physics of
the problem is ignored, the information is statistical in nature.
Statistical treatments require a large number of data to cover
all possible situations that might occur. Hence, it is necessary
to consider the range of the parameters in the input data. A
neural network approach may not properly extract values of the
parameters beyond the range that served as the input. That is,
the quality of the extract values may be reduced if the input data
do not probably represent the problem of interest. Third, the
proposed PORTOS-93 data trained algorithm is also applied to
the PORTOS-96 data, while the study of Wigneronet al. [11]
was only based on PORTOS-93 data.

II. RETRIEVAL DESCRIPTION

A. The Physical System

The SMC profile is a result of the balance in moisture and
energy budgets at the land–air interface and within the soil. It
can be characterized by a land surface process (LSP) module
that solves coupled differential equations of moisture and en-
ergy conservation. The LSP module must account for the en-
ergy and moisture interactions among the air, the soil, and the
canopy if vegetation is present. The consequent soil and canopy
radiobrightness for polarization can be found by [9]

(1)

where is the effective emitting temperature of the soil, K;
is the Fresnel reflectivity of the moist soil for polarization

; is the optical thickness of the canopy, nepers (Np);is
the cosine of the incident angle, degrees; and is the ef-
fective emitting temperature of the canopy, K. The effective

emitting temperatures of the soil and canopy, the reflectivity of
the soil, and the optical thickness of the canopy are all func-
tions of the physical temperature and moisture content of the
soil and canopy. Brightness temperatures of the vegetated ter-
rain are hence nonlinearly dependent on SMC and PWC in ad-
dition to their dependence on the other factors, such as soil
and canopy temperatures, surface scattering from the soil, and
volume scattering from the canopy …, etc. Note that improper
handling of these factors would potentially degrade the recovery
of SMC and PWC from radiobrightness. For example, the igno-
rance of surface scattering from the vegetation–soil interface re-
sulted in underestimate of brightness temperatures at-polar-
ized, -band at an incident angle of 53over prairie grasslands
by 12 K [14].

B. Field Measurements

Field measurements used in this study have been applied in
previous studies [11], [15], [16]. Inevitably, for the convenience
of reading this article, this subsection duplicates some materials
from the previous studies.

The field campaigns were conducted over wheat fields
through three-month growth cycles at the Institut National de
Recherches Agronomiques (INRA) Avignon Remote Sensing
test site (4355 N, 4 53 E) in 1993 (PORTOS-93) and 1996
(PORTOS-96). It was manufactured by the Centre National
d’Etudes Spatiales of France and Matra Marconi Space in 1990.
Its operating frequencies include 1.4 (-band), 5.05, 10.65
( -band), 23.8, 36.5, and 90 GHz. Its 3-dB and the 20-dB
beamwidth were 12.5and 30 , respectively. Its calibrations
were made over calm water surfaces and “eccosorb” slabs either
at ambient temperature or immersed in liquid nitrogen. The
calibrations showed that the measured brightness temperature
could be expressed as a linear function of the radiometer output
and the coefficients of this function could be kept constant
during the whole experiment. Based on this simple calibration
approach, the radiometer absolute accuracy was about 5 K
and 3 K at 1.4 and 10.5 GHz, respectively. Both- and

-polarized brightness temperatures were measured, while
the microwave data used in this study only include-band
brightness temperatures at viewing angles common both to the
1993 and the 1996 data and-band brightness temperatures
measured in 1993 as shown in Fig. 1. The reasons are threefold.
First, brightness temperatures at 23.8 and 36.5 GHz are insen-
sitive to soil moisture over the wheat field. Second, brightness
temperatures at -band are unavailable in 1996. Third, the

-band radiometer appears to be instable for about 5% of the
measurements. Hence, nothing is presented latter using the

-band measurements in 1996.
Note that there is difference in mounting the radiometer in

1993 and 1996. In 1993, the radiometer was mounted on a
20-meter crane boom and observations were carried out at dif-
ferent incidence angles (from 0to 60 over a large 40 60 m
wheat field). The look direction of the radiometer was parallel
or orthogonal to the tillage direction of the bare field plots. In
1996, the radiometer was installed on a cross-bar system at a
height of about five meters. To avoid measuring the instrument
self-emission at low incidence angles, the measurements were
obtained over a limited range of incidence angles (30 to 55).
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Fig. 1. L-band andX-band brightness temperatures measured in (a) 1993 and
(b) 1996. The numbers 30 and 50 are the viewing angles in degrees.

The field plot consists of silty clay loam soil with 62% silt,
11% sand and 27% clay. A large range of SMC conditions were
obtained by irrigating the field and, then, letting it dry out (dry
and sunny conditions occurred during the experiment). How-
ever, the surface SMC conditions were spatially rather heteroge-
neous over the fields especially during extreme conditions (i.e.,
very dry and very wet) [17]. It was observed that moist spots re-
mained in dry conditions and puddles occurred just after rainfall
or irrigation events. Hence, gravimetric moisture sampling may
not be representative of the actual SMC conditions at the field
scale during extreme conditions. The accuracy in volumetric
SMC measurements was estimated to be about 4% during the
whole experiment. The soil variables were sampled regularly
during the campaign. Concurrently with the radiometric obser-
vations, SMC profiles were obtained from gravimetric measure-
ments (3 to 5 replications) at several depth intervals (0–0.5 cm,
0–1 cm, 1–2 cm, 2–3 cm, 3–4 cm, 4–5 cm, 5–7 cm and 7–10 cm
in 1993 and 0–0.5 cm, 0–1 cm, 1–2 cm, 2–3 cm, 3–5 cm in
1996). These gravimetric measurements were converted into
volumetric soil moisture using the measured dry bulk density

for each field plot. Vertical profiles of were obtained from
a transmission gamma-ray technique [18] at different depths in
soil [19]. The value of at the soil surface (mean value over
the 2–4 cm depth interval) is about 1.35 g/cmin 1993 and
1.27 g/cm in 1996.

Additional measurements of SMC were obtained for all
measurement dates using the time domain reflectrometry

(a)

(b)

Fig. 2. Total fresh biomass, water content, and dry biomass of the wheat
vegetation through three month growth cycles in (a) 1993 and (b) 1996.

(TDR) method [20]. Six TDR probes were installed in the
wheat field at a depth of about 3 cm. Their measurements pro-
vide an estimate of the volumetric SMC of top 0–5 cm layer.
Soil temperature was automatically measured with platinum
resistance temperature probes or thermocouples. Ten probes
were installed in the soil at different depths from about 0.5 cm
to 1 meter at depth. The soil temperature was measured con-
tinuously and averaged every 10 min. Vegetation was sampled
approximately weekly both in 1993 and in 1996 to obtain dry
and wet biomass, water content, height, volume fraction, and
geometry of the vegetation canopy. In addition, a thermal in-
frared radiometer (8–14m) was mounted on the crane boom
to monitor the surface temperature concurrently with the ra-
diometric measurements.

Fig. 2(a) shows the total fresh biomass, PWC, and dry
biomass of the wheat from day of year (DoY) 110 to 190
in 1993 (seeding was performed on DoY 78 and harvest
was done shortly after DoY 190). Fig. 2(b) shows total fresh
biomass, PWC, and dry biomass of the wheat from DoY 79
to 183 in 1996. Fig. 2(a) and (b) show that the wheat biomass
is much heavier in 1996 than in 1993. The maximum total
fresh biomass (PWC) is 3.33 (2.61) kg/min 1993, and 4.60
(3.38) kg/m in 1996. While the PORTOS-96 data could
have extended the PORTOS-93 data to a larger range of
vegetation biomass, there were no radiometric observations
over a significant portion of the PORTOS-96 experiment
(from DoY 109 to 144).
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C. Neural Network

Neural networks are known for their ability to handle non-
linear mapping problems. Liouet al. [21] applied a dynamic
learning neural network to demonstrate the capability of the

-band radiometry in sensing soil moisture based on the LSP/R
model simulations for the HYDROSTAR mission proposed by
Englandet al. [22]. Recently, the EPLBP neural network was
used to retrieve surface soil moisture from simulated brightness
temperatures for a variety of frequency and viewing angle com-
binations [8]. The combinations consist of AMSR’s two lowest
channels for a viewing angle of 55and -band for multiple
viewing angles of 0, 10, 20, 30, 40, and 50. It was shown that
the sensitivity of the AMSR channels to soil moisture is in-
creased by incorporating-band signal, and that an-band 2-D
(two look angles) or a multiple dimensional observation mode
is superior to an -band 1-D (one look angle) observation mode
for sensing SMC. The maximum retrieval error is only 1.76%
(by volume) for all of the studied cases even though Gaussian
distributed noises with standard deviation as large as 2 K are
added to the simulated instrumental noises. The retrieval error is
relatively low because model simulations present well-defined
relationship between soil moisture and brightness temperatures.
Since the correlation relationship of concern in nature cannot be
completely defined by physical modeling, it is of great interest
to reexamine the radiometric sensing of soil moisture based on
field measurements.

In this paper, the EPLBP neural network is used not only to re-
trieve SMC from the observed brightness temperatures based on
the similar observing configurations studied by Liouet al. [8],
but also to infer PWC. More details about the implementation
of the EPLBP neural network are referred to Liouet al. [8]. We
use some of the PORTOS-93 data to train and “validate” (to be
explained in the next subsection) the neural network and apply
it to the remaining PORTOS-93 data as representative of wheat
biomass less than 3.33 kg/m. The measurements are managed
as follows.

1) Obtain the measured brightness temperatures (Tb), SMC,
and PWC.

2) Form a data set to be further processed and analyzed. The
measurements of Tb, SMC, and PWC that are simultane-
ously available in the same day are chosen. The measure-
ment time was typically between 12:00 and 17:00.

3) Normalize the data to fall into the range between 0 and
1. The data are assumed to be Gaussian distributed and
offset by their average.

4) Allocate the observed data randomly into three groups,
namely training, “validation,” and testing, with approxi-
mately one half, one quarter, and one quarter of the data,
respectively, but for SMC retrievals the data used for val-
idation are also used in testing due to relatively limited
numbers of the data. Note that only PORTOS-93 data are
used in training and “validation,” but both PORTOS-93
and -96 data are used in testing. The term “validation”
is used since the scheme of “early stopping with valida-
tion” is adopted to avoid over-training of the neural net-
work. The training process is stopped if any of the fol-
lowing five conditions exists [23]. First, the maximum

number 100 of training epochs (repetitions) is reached.
This condition is rarely applied in this study. Second, the
gradient of the training performance falls bellow 10.
Third, over-training occurs. This is recognized when vali-
dation errors increase for a specified number of iterations.
Fourth, the training performance has been minimized to
zero. Fifth, the tuning index of Levenberg–Marquardt op-
timization exceeds 10.

5) Apply the EPLBP neural network to the testing data and
record the results or retrievals. The retrievals are then
analyzed and used to provide the statistics (RMSE and
weighted RMSE) presented in the following.

As a practical extension, the trained neural network is also
used to recover SMC and PWC from the PORTOS-96 data. It
is found that the accuracy of the retrievals is low with errors
around 0.6 to 0.8 kg/mon average if we do not filter all data
in 1996 with a biomass larger than in 1993. The associated low-
quality retrievals are not further presented. Results presented in
the following are obtained after performing the filtering.

D. Observation Modes

Based on the data management addressed in the previous sub-
section, there are in total 13 observation (i.e., input-data) modes.
Note that both horizontal and vertical brightness temperatures
are used in the retrieval.

1) One -band observation mode—Radiometric measure-
ments at -band at an incident angle of 50.

2) Three -band 1-D (one look angle) observation
modes—Radiometric observations at-band at an-
gles of either 30, or 40, or 50. Each angle corresponds
to one -band 1-D observation mode.

3) Three -band 2-D (two look angles) observation
modes—Radiometric observations at-band at two
angles of either 30 and 40, or 40 and 50, or 30 and
50 . Each combination of two angles corresponds to one

-band 2-D observation mode.
4) Six integrated - and -band observation modes—Ra-

diometric observations at -band combined with those
prepared in steps 2, and 3 to become integrated-band
and -band multiple dimensional observation modes.

III. RESULTS AND DISCUSSION

A. Correlation Between Brightness Temperatures and Surface
Parameters

The observed brightness temperatures are used to infer SMC
and PWC. Their correlation with surface parameters indicates
to some degree how good the retrieval quality can be achieved.
Table I compares the correlation coefficients between bright-
ness temperatures at- and -band and SMC in the topmost
5 cm of soil layers. Three major features are observable. First,

-band is less sensitive to SMC than-band because wheat
canopy appears to be optically thick. The correlation coeffi-
cients are low, 0.222 and 0.272, for the -band cases, but
higher than 0.615 for the -band cases. Second, the correla-
tion coefficients are slightly higher in 1996 than in 1993 by 0.1
or so. Note that the measurements were taken during the whole
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TABLE I
CORRELATION COEFFICIENTBETWEENBRIGHTNESSTEMPERATURES ATL- AND X-BAND AND SMC IN THE TOPMOST5 cmOF SOIL LAYERS

TABLE II
CORRELATION COEFFICIENTBETWEEN BRIGHTNESSTEMPERATURES ATL- AND X-BAND AND VEGETATION BIOMASS

growth cycle of the wheat in 1993 but not in 1996. As men-
tioned, brightness temperatures are unavailable from DoY 109
to 144 in 1996 during which period the wheat is growing and
healthy, and appears to have higher masking effect on the trans-
mission of microwave emissions from soil to the radiometer.
Third, the higher the viewing angle, the lower the correlation
between -band brightness and SMC. For example, the correla-
tion coefficients are 0.919 at 30, 0.905 at 40, and 0.773
at 50 for the -polarized -band cases.

Table II shows correlation coefficients between brightness
temperatures at - and -band and vegetation biomass. Note
that microwave emission from wheat is information here but
noise for the problem of sensing SMC. Consequently, compared
to Table I, Table II shows three similar but opposite characteris-
tics. First, -band is more correlated with vegetation biomass
than -band. Second, the correlation coefficients are lower in
1996 than in 1993. Third, the higher the viewing angle, the
higher the correlation between-band brightness and vegeta-
tion biomass.

B. Retrieval of Soil Moisture Content

The rms errors (RMSEs) in the retrieved SMC versus depth
are shown in Fig. 3 for the -band (a) 1-D and (b) 2-D obser-
vation modes. Two characteristics are observed. First, RMSEs
scatter over a larger range for 1996 than 1993 possibly because
the neural network is trained with the 1993 data only. Second,
RMSEs locate in the regions with larger magnitudes for the

-band 1-D than 2-D observation modes between depths 0 and
5 cm. The only outlier is that the RMSE at the depth of 4.5 cm
(4–5 cm) for the -band 2-D observation mode is relatively
high. These results indicate that the quality of the retrieval is
higher for the -band 2-D than 1-D observation modes. Such a
finding is consistent with that observed by Liouet al. [8] based

Fig. 3. The rms errors (RMSEs) in the retrieved SMC versus depth for the
L-band: (a) one-dimensional (1-D) and (b) two-dimensional (2-D) observation
modes. The numbers 30, 40, and 50 are the viewing angles in degrees with that
93′ and 96′represent the years of 1993 and 1996, respectively.

on predictions from theoretical models. Note that the RMSEs
at the depths below 5 cm for the-band 2-D observation mode
are relatively high since -band is essentially losing sensitivity
to SMC, and hence associated measurements are not further
considered.

The RMSEs are then used to compute weighted RMSE
(WRMSE) with weighting linearly dependent on the thickness
of each soil layer. Fig. 4 shows the WRMSEs for the-band
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TABLE III
NUMBERS OFMEASUREMENTSUSED TOTRAIN, VALIDATE , AND TEST THEEPLBP NEURAL NETWORK FORSMC RETRIEVALS

Fig. 4. WRMSEs in the retrieved SMC for theL-band 1-D and 2-D, and
X-band 1-D observation modes. The numbers indicate the magnitudes of the
WRMSEs.

1-D and -band observation modes, and the-band 2-D
observation modes. The numbers indicate the magnitudes
of the WRMSEs. RMSEs for the topmost 5 cm soil layers
(0–1 cm, 1–2 cm, 2–3 cm, 3–4 cm, 4–5 cm in 1993 and 0–1 cm,
1–2 cm, 2–3 cm, 3–5 cm in 1996) are used to compute the
WRMSEs since -band becomes less sensitive to SMC at
depths between 5 and 10 cm. Generally speaking, there is no
specific look angle of concern found to be the best for sensing
SMC. Table III shows the numbers of measurements used to
train, validate, and test the EPLBP neural network for SMC
retrievals. The numbers are not too many since tremendous
work is required to collect all the parameters of interest. They
are relatively small in 1996 due to the above-mentioned data
filtering and unavailable data for a significant portion of field
campaign. Three encouraging characteristics are observed.
First, the largest WRMSE of 0.059 g/cmoccurs for the

-band observation mode because of its insensitivity to SMC
over vegetated terrains. Second, WRMSEs are larger for the

-band 1-D (from 0.034 to 0.048 g/cm, average 0.041 g/cm
or 5% by volume) than 2-D (from 0.019 to 0.041 g/cm,
average 0.034 g/cmor 4% by volume) observation modes.
Third, but not least important, the accuracy in the retrieved
SMC is good not only for the 1993 cases, but also for the 1996
cases. The averages of the errors are about 0.041 g/cmor
5% by volume for all cases in 1993, and about 0.034 g/cm
or 4% by volume in 1996. These inter-comparison results are
consistent with those found by Liouet al. [8]. Note that while
results from the neural network vary from one test to another,

Fig. 5. WRMSE in the retrieved SMC for the integratedX-band andL-band
1-D/2-D observation modes in 1993. The numbers indicate the magnitudes of
the WRMSEs.

the results presented in Figs. 3 and 4 are typical and represent a
general trend for the performance of the neural network.

Fig. 5 shows WRMSE in the retrieved SMC for the integrated
- and -band 1-D/2-D observation modes in 1993. A com-

parison between Figs. 4 and 5 shows that the quality of the
retrieval is slightly improved for the -band 1-D observation
modes, but considerably for the 2-D observation modes with
incorporation of the -band signals. The mean errors are re-
duced from 0.043 g/cmto 0.042 g/cm for the -band 1-D
observation modes, and from 0.038 g/cmto 0.031 g/cm for
the -band 2-D observation modes. Although this is not totally
same as the previous experience [8] where the-band signal
improved the quality of the retrieval for any specific observation
mode of interest, the -band signal does in general add addi-
tional values to -band 1-D and 2-D radiometry. The reasons
for the disagreement are at least twofold. First, biomass varies
over a large range in the current study, but constant in Liouet al.
[8]. Second, -band is essentially insensitive to SMC under the
vegetation in this study as shown in Table I. Apparently, field
measurements used to cross check the results from theoretical
simulations are crucial. Table IV shows the numbers of measure-
ments used to train, validate, and test the EPLBP neural network
with incorporation of -band signals for SMC retrievals.

C. Retrieval of Vegetation Water Content

RMSE in the retrieved PWC for the-band 1-D and 2-D,
and -band observation modes are plotted in Fig. 6. It is clearly
seen that -band 2-D radiometry is superior to-band 1-D ra-
diometry for sensing PWC. For example, the RMSE ranges from
0.233 to 0.313 kg/mfor the -band 1-D observation modes,
and from 0.095 to 0.224 kg/mfor the -band 2-D observation
modes in 1993. The exception is that RMSE is relatively high at
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TABLE IV
NUMBERS OF MEASUREMENTS USED TO TRAIN, VALIDATE , AND TEST THE EPLBP NEURAL NETWORK

FOR SMC RETRIEVALS WITH INCORPORATION OFX-BAND SIGNALS

TABLE V
NUMBERS OFMEASUREMENTSUSED TOTRAIN, VALIDATE , AND TEST THEEPLBP NEURAL NETWORK FORPWC RETRIEVALS

Fig. 6. RMSE in the retrieved PWC for theL-band 1-D and 2-D, andX-band
observation modes. The numbers indicate the magnitudes of the RMSEs.

0.489 kg/m for the -band 2-D case in 1996. It is also seen that
the quality of retrieval from the -band 2-D radiometry is rather
good in 1993, and satisfactory in 1996 even though the neural
network is trained by the PORTOS-93 data only. The average
errors on PWC were only about 0.239 kg/m—0.160 kg/m in
1993 and 0.319 kg/min 1996. The errors are the largest for the

-band observation mode because the brightness temperatures
are relatively weakly correlated with PWC. The RMSE in the
retrieved PWC from -band data is 0.371 kg/min 1993. The
numbers of measurements used to train, validate, and test the
EPLBP neural network for PWC retrievals are listed in Table V.
Reasonable numbers of observations are used in 1993 although
there are fewer measurements in 1996.

Fig. 7 shows RMSE in the retrieved PWC for the integrated
-band and -band 1-D/2-D observation modes in 1993.

Overall speaking, the quality of the retrieved PWC is very
good. In addition, as expected, the errors are smaller for the
integrated -band -band 2-D than 1-D observation modes.

Fig. 7. RMSE in the retrieved PWC for the integratedX-band andL-band
1-D/2-D observation modes in 1993. The numbers indicate the magnitudes of
the RMSEs.

The average errors were 0.259 kg/mfor the integrated -band
and -band 1-D observation modes and 0.137 kg/mfor the
integrated -band and -band 2-D observation modes. A
comparison between Fig. 6 and 7 shows that-band adds
additional values to -band 1-D and 2-D radiometry for
sensing PWC for all observation modes. Table VI lists the
numbers of measurements used to train, validate, and test the
EPLBP neural network for PWC retrievals with incorporation
of -band signals.

IV. CONCLUSIONS

This paper investigates the retrieval of SMC and PWC
from the brightness temperatures at-band and -band, and
their combination based on the measurements taken during
the PORTOS-93 and -96 field campaigns. There are in total
13 observation modes considered. We find that rather good
retrievals can be obtained for both SMC and PWC if-band
2-D radiometry is utilized. It has been shown the average errors
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TABLE VI
NUMBERS OF MEASUREMENTS USED TO TRAIN, VALIDATE , AND TEST THE EPLBP NEURAL NETWORK

FOR PWC RETRIEVALS WITH INCORPORATION OFX-BAND SIGNALS

are about 4% by volume for the retrieved SMC and 0.239 kg/m
for the retrieved PWC (0.160 kg/min 1993 and 0.319 kg/m
in 1996). These retrievals are especially satisfactory and
convincing on the 1996 cases even though the neural network is
trained by the 1993 data only, and hence make us feel confident
in the retrievals through the neural network approach.

In addition, results demonstrate that the-band 2-D radiom-
etry provides higher quality retrieval of SMC and PWC than the

-band 1-D radiometry as proved in a previous study by Liou
et al. [8] who utilized simulated brightness temperatures and
SMC predicted by the LSP/R models. It is further shown that
the -band signals are in general helpful to improve the quality
of the retrieved SMC and PWC from-band radiometry.

Furthermore, it is shown that the vegetation has a larger
masking effect on the -band’s sensitivity to SMC than the

-band. Among the thirteen studied observation modes the
maximum WRMSEs/RMSEs in the retrieved SMC and PWC
occur for the -band observation mode. The associated errors
are 0.059 g/cmfor SMC, and 0.371 kg/mPWC in 1993. In
contrast, the WRMSEs/RMSEs may be minimized when the

-band 2-D observation modes (with or without incorporation
of -band signals) are utilized. They are only 0.031 g/cmor
4% by volume for SMC, and 0.137 kg/mfor PWC for the
integrated -band and -band 2-D observation modes.
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